Doxygen 1.9.1
Toolkit for Adaptive Stochastic Modeling and Non-Intrusive ApproximatioN: Tasmanian v8.2 (development)
tsgDreamCoreRandom.hpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017, Miroslav Stoyanov
3  *
4  * This file is part of
5  * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
6  *
7  * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
12  * and the following disclaimer in the documentation and/or other materials provided with the distribution.
13  *
14  * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
15  * or promote products derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
20  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
21  * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  *
24  * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
25  * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
26  * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
27  * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
28  * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
29  */
30 
31 #ifndef __TASMANIAN_DREAM_CORE_RANDOM_HPP
32 #define __TASMANIAN_DREAM_CORE_RANDOM_HPP
33 
54 namespace TasDREAM{
55 
59 
61 inline double tsgCoreUniform01(){ return ((double) rand()) / ((double) RAND_MAX); }
62 
65 
67 inline void applyUniformUpdate(std::vector<double> &x, double magnitude, std::function<double(void)> get_random01 = tsgCoreUniform01){
68  if (magnitude == 0.0) return;
69  for(auto &v : x) v += magnitude * (2.0 * get_random01() -1.0);
70 }
71 
74 
77 inline void applyGaussianUpdate(std::vector<double> &x, double magnitude, std::function<double(void)> get_random01 = tsgCoreUniform01){
78  if (magnitude == 0.0) return;
79  bool tictoc = false;
80  double g = 0.0;
81  for(auto &v : x){
82  tictoc = !tictoc;
83  if (tictoc){
84  double r = magnitude * std::sqrt(-2.0 * std::log(get_random01())), t = 2.0 * DreamMaths::pi * get_random01(); // radius and angle
85  v += r * std::cos(t);
86  g = r * std::sin(t);
87  }else{
88  v += g;
89  }
90  }
91 }
92 
95 
99 inline void genUniformSamples(const std::vector<double> &lower, const std::vector<double> &upper, int num_samples, std::vector<double> &x, std::function<double(void)> get_random01 = tsgCoreUniform01){
100  if (lower.size() != upper.size()) throw std::runtime_error("ERROR: genUniformSamples() requires lower and upper vectors with matching size.");
101  if (x.size() != lower.size() * num_samples) x.resize(lower.size() * num_samples);
102  for(auto &v : x) v = get_random01();
103 
104  std::vector<double> length(lower.size());
105  std::transform(lower.begin(), lower.end(), upper.begin(), length.begin(), [&](double l, double u)->double{ return (u - l); });
106 
107  auto ix = x.begin();
108  while(ix != x.end()){
109  auto ilow = lower.begin();
110  for(auto l : length){
111  *ix *= l;
112  *ix++ += *ilow++;
113  }
114  }
115 }
116 
121 inline std::vector<double> genUniformSamples(const std::vector<double> &lower, const std::vector<double> &upper,
122  int num_samples, std::function<double(void)> get_random01 = tsgCoreUniform01){
123  std::vector<double> x;
124  genUniformSamples(lower, upper, num_samples, x, get_random01);
125  return x;
126 }
127 
130 
134 inline void genGaussianSamples(const std::vector<double> &means, const std::vector<double> &deviations,
135  int num_samples, std::vector<double> &x, std::function<double(void)> get_random01 = tsgCoreUniform01){
136  if (means.size() != deviations.size()) throw std::runtime_error("ERROR: genGaussianSamples() means and deviations vectors must have the same size.");
137  if (x.size() != means.size() * num_samples) x.resize(means.size() * num_samples);
138 
139  std::fill_n(x.data(), x.size(), 0.0);
140  applyGaussianUpdate(x, 1.0, get_random01);
141 
142  auto ix = x.begin();
143  while(ix != x.end()){
144  auto im = means.begin();
145  for(auto s : deviations){
146  *ix *= s;
147  *ix++ += *im++;
148  }
149  }
150 }
151 
156 inline std::vector<double> genGaussianSamples(const std::vector<double> &means, const std::vector<double> &deviations,
157  int num_samples, std::function<double(void)> get_random01 = tsgCoreUniform01){
158  std::vector<double> x;
159  genGaussianSamples(means, deviations, num_samples, x, get_random01);
160  return x;
161 }
162 
163 }
164 
165 #endif
void genUniformSamples(const std::vector< double > &lower, const std::vector< double > &upper, int num_samples, std::vector< double > &x, std::function< double(void)> get_random01=tsgCoreUniform01)
Generate uniform random samples in the hypercube defined by lower and upper limits.
Definition: tsgDreamCoreRandom.hpp:99
void applyGaussianUpdate(std::vector< double > &x, double magnitude, std::function< double(void)> get_random01=tsgCoreUniform01)
Add a correction to every entry in x, sue Gaussian distribution with zero mean and standard deviation...
Definition: tsgDreamCoreRandom.hpp:77
double tsgCoreUniform01()
Default random sampler, using rand() divided by RAND_MAX.
Definition: tsgDreamCoreRandom.hpp:61
void genGaussianSamples(const std::vector< double > &means, const std::vector< double > &deviations, int num_samples, std::vector< double > &x, std::function< double(void)> get_random01=tsgCoreUniform01)
Generate standard normal samples with given means and standard deviations.
Definition: tsgDreamCoreRandom.hpp:134
void applyUniformUpdate(std::vector< double > &x, double magnitude, std::function< double(void)> get_random01=tsgCoreUniform01)
Add a correction to every entry in x, use uniform samples over (-magnitude, magnitude).
Definition: tsgDreamCoreRandom.hpp:67
constexpr double pi
Half-period of the std::sin() and std::cos() functions.
Definition: tsgMathUtils.hpp:117
Encapsulates the Tasmanian DREAM module.
Definition: TasmanianDREAM.hpp:80