31 #ifndef __TASMANIAN_DREAM_LIKELY_GAUSS_HPP 
   32 #define __TASMANIAN_DREAM_LIKELY_GAUSS_HPP 
   77     void setData(
double variance, 
const std::vector<double> &data_mean, 
size_t num_observe = 1);
 
  101     void write(std::ostream &os, 
int outputs_begin = 0, 
int outputs_end = -1)
 const{
 
  103         outputs_end = std::min(std::max(outputs_begin + 1, outputs_end), 
getNumOutputs());
 
  104         int num_entries = outputs_end - outputs_begin;
 
  105         TasGrid::IO::writeNumbers<TasGrid::mode_binary, TasGrid::IO::pad_none>(os, num_entries);
 
  106         TasGrid::IO::writeNumbers<TasGrid::mode_binary, TasGrid::IO::pad_none>(os, scale);
 
  107         os.write((
char*) &data[outputs_begin], num_entries * 
sizeof(
double));
 
  112         int num_entries = TasGrid::IO::readNumber<TasGrid::IO::mode_binary_type, int>(is);
 
  113         scale = TasGrid::IO::readNumber<TasGrid::IO::mode_binary_type, double>(is);
 
  114         data = std::vector<double>((
size_t) num_entries);
 
  115         TasGrid::IO::readVector<TasGrid::IO::mode_binary_type>(is, data);
 
  119     std::vector<double> data;
 
  156     void setData(std::vector<double> 
const &variance, std::vector<double> 
const &data_mean, 
size_t num_observe = 1);
 
  172     void write(std::ostream &os, 
int outputs_begin = 0, 
int outputs_end = -1)
 const{
 
  174         outputs_end = std::min(std::max(outputs_begin + 1, outputs_end), 
getNumOutputs());
 
  175         int num_entries = outputs_end - outputs_begin;
 
  176         TasGrid::IO::writeNumbers<TasGrid::mode_binary, TasGrid::IO::pad_none>(os, num_entries);
 
  177         os.write((
char*) &data_by_variance[outputs_begin], num_entries * 
sizeof(
double));
 
  178         os.write((
char*) &noise_variance[outputs_begin], num_entries * 
sizeof(
double));
 
  183         int num_entries = TasGrid::IO::readNumber<TasGrid::IO::mode_binary_type, int>(is);
 
  184         data_by_variance = std::vector<double>((
size_t) num_entries);
 
  185         noise_variance   = std::vector<double>((
size_t) num_entries);
 
  186         TasGrid::IO::readVector<TasGrid::IO::mode_binary_type>(is, data_by_variance);
 
  187         TasGrid::IO::readVector<TasGrid::IO::mode_binary_type>(is, noise_variance);
 
  191     std::vector<double> data_by_variance;
 
  192     std::vector<double> noise_variance;
 
Implements likelihood under the assumption of anisotropic white noise.
Definition: tsgDreamLikelyGaussian.hpp:139
int getNumOutputs() const override
Returns the size of the data_mean vector (for error checking purposes).
Definition: tsgDreamLikelyGaussian.hpp:165
void read(std::istream &is)
Reads the data from a stream, assumes write() has been used first.
Definition: tsgDreamLikelyGaussian.hpp:182
LikelihoodGaussAnisotropic()=default
Default constructor for convenience, an object constructed with the default cannot be used until setD...
void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final
Overload for raw-arrays, for interface purposes mostly, e.g., python.
LikelihoodGaussAnisotropic(std::vector< double > const &variance, std::vector< double > const &data_mean, size_t num_observe=1)
Constructs the class and calls setData().
Definition: tsgDreamLikelyGaussian.hpp:144
void getLikelihood(TypeSamplingForm form, std::vector< double > const &model, std::vector< double > &likely) const override final
Compute the likelihood of a set of model outputs.
~LikelihoodGaussAnisotropic()=default
Default destructor.
void write(std::ostream &os, int outputs_begin=0, int outputs_end=-1) const
Writes the data for a portion of the outputs into a stream.
Definition: tsgDreamLikelyGaussian.hpp:172
void setData(std::vector< double > const &variance, std::vector< double > const &data_mean, size_t num_observe=1)
Set the noise magnitude (variance) the observed data (data_mean) and number of observations (num_obse...
Implements likelihood under the assumption of isotropic white noise.
Definition: tsgDreamLikelyGaussian.hpp:59
void getLikelihood(TypeSamplingForm form, const std::vector< double > &model, std::vector< double > &likely) const override final
Compute the likelihood of a set of model outputs.
~LikelihoodGaussIsotropic()=default
Default destructor.
LikelihoodGaussIsotropic(double variance, const std::vector< double > &data_mean, size_t num_observe=1)
Constructs the class and calls setData().
Definition: tsgDreamLikelyGaussian.hpp:64
void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final
Overload for raw-arrays, for interface purposes mostly, e.g., python.
LikelihoodGaussIsotropic()
Default constructor for convenience, an object constructed with the default cannot be used until setD...
Definition: tsgDreamLikelyGaussian.hpp:62
int getNumOutputs() const override
Returns the size of the data_mean vector (for error checking purposes).
Definition: tsgDreamLikelyGaussian.hpp:86
void read(std::istream &is)
Reads the data from a stream, assumes write() has been used first.
Definition: tsgDreamLikelyGaussian.hpp:111
void setData(double variance, const std::vector< double > &data_mean, size_t num_observe=1)
Set the noise magnitude (varaince) the observed data (data_mean) and number of observations (num_obse...
void write(std::ostream &os, int outputs_begin=0, int outputs_end=-1) const
Writes the data for a portion of the outputs into a stream.
Definition: tsgDreamLikelyGaussian.hpp:101
Interface for the likelihood classes.
Definition: tsgDreamLikelihoodCore.hpp:68
Encapsulates the Tasmanian DREAM module.
Definition: TasmanianDREAM.hpp:80
The interface mother-class for the likelihood classes.