Doxygen 1.9.1
Toolkit for Adaptive Stochastic Modeling and Non-Intrusive ApproximatioN: Tasmanian v8.1
tsgDreamLikelyGaussian.hpp
1 /*
2  * Copyright (c) 2017, Miroslav Stoyanov
3  *
4  * This file is part of
5  * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
6  *
7  * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
12  * and the following disclaimer in the documentation and/or other materials provided with the distribution.
13  *
14  * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
15  * or promote products derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
18  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
20  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
21  * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  *
24  * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
25  * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
26  * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
27  * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
28  * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
29  */
30 
31 #ifndef __TASMANIAN_DREAM_LIKELY_GAUSS_HPP
32 #define __TASMANIAN_DREAM_LIKELY_GAUSS_HPP
33 
34 #include "tsgDreamLikelihoodCore.hpp"
35 
45 namespace TasDREAM{
46 
49 
60 public:
62  LikelihoodGaussIsotropic() : scale(0.0){}
64  LikelihoodGaussIsotropic(double variance, const std::vector<double> &data_mean, size_t num_observe = 1){ setData(variance, data_mean, num_observe); }
67 
77  void setData(double variance, const std::vector<double> &data_mean, size_t num_observe = 1);
78 
80  void getLikelihood(TypeSamplingForm form, const std::vector<double> &model, std::vector<double> &likely) const override final;
81 
83  void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final;
84 
86  int getNumOutputs() const override{ return (int) data.size(); }
87 
101  void write(std::ostream &os, int outputs_begin = 0, int outputs_end = -1) const{
102  if (outputs_end < 0) outputs_end = getNumOutputs();
103  outputs_end = std::min(std::max(outputs_begin + 1, outputs_end), getNumOutputs());
104  int num_entries = outputs_end - outputs_begin;
105  TasGrid::IO::writeNumbers<TasGrid::mode_binary, TasGrid::IO::pad_none>(os, num_entries);
106  TasGrid::IO::writeNumbers<TasGrid::mode_binary, TasGrid::IO::pad_none>(os, scale);
107  os.write((char*) &data[outputs_begin], num_entries * sizeof(double));
108  }
109 
111  void read(std::istream &is){
112  int num_entries = TasGrid::IO::readNumber<TasGrid::IO::mode_binary_type, int>(is);
113  scale = TasGrid::IO::readNumber<TasGrid::IO::mode_binary_type, double>(is);
114  data = std::vector<double>((size_t) num_entries);
115  TasGrid::IO::readVector<TasGrid::IO::mode_binary_type>(is, data);
116  }
117 
118 private:
119  std::vector<double> data;
120  double scale;
121 };
122 
140 public:
144  LikelihoodGaussAnisotropic(std::vector<double> const &variance, std::vector<double> const &data_mean, size_t num_observe = 1){ setData(variance, data_mean, num_observe); }
147 
156  void setData(std::vector<double> const &variance, std::vector<double> const &data_mean, size_t num_observe = 1);
157 
159  void getLikelihood(TypeSamplingForm form, std::vector<double> const &model, std::vector<double> &likely) const override final;
160 
162  void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final;
163 
165  int getNumOutputs() const override{ return (int) noise_variance.size(); }
166 
172  void write(std::ostream &os, int outputs_begin = 0, int outputs_end = -1) const{
173  if (outputs_end < 0) outputs_end = getNumOutputs();
174  outputs_end = std::min(std::max(outputs_begin + 1, outputs_end), getNumOutputs());
175  int num_entries = outputs_end - outputs_begin;
176  TasGrid::IO::writeNumbers<TasGrid::mode_binary, TasGrid::IO::pad_none>(os, num_entries);
177  os.write((char*) &data_by_variance[outputs_begin], num_entries * sizeof(double));
178  os.write((char*) &noise_variance[outputs_begin], num_entries * sizeof(double));
179  }
180 
182  void read(std::istream &is){
183  int num_entries = TasGrid::IO::readNumber<TasGrid::IO::mode_binary_type, int>(is);
184  data_by_variance = std::vector<double>((size_t) num_entries);
185  noise_variance = std::vector<double>((size_t) num_entries);
186  TasGrid::IO::readVector<TasGrid::IO::mode_binary_type>(is, data_by_variance);
187  TasGrid::IO::readVector<TasGrid::IO::mode_binary_type>(is, noise_variance);
188  }
189 
190 private:
191  std::vector<double> data_by_variance;
192  std::vector<double> noise_variance;
193 };
194 
195 
196 }
197 
198 #endif
Implements likelihood under the assumption of anisotropic white noise.
Definition: tsgDreamLikelyGaussian.hpp:139
int getNumOutputs() const override
Returns the size of the data_mean vector (for error checking purposes).
Definition: tsgDreamLikelyGaussian.hpp:165
void read(std::istream &is)
Reads the data from a stream, assumes write() has been used first.
Definition: tsgDreamLikelyGaussian.hpp:182
LikelihoodGaussAnisotropic()=default
Default constructor for convenience, an object constructed with the default cannot be used until setD...
void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final
Overload for raw-arrays, for interface purposes mostly, e.g., python.
LikelihoodGaussAnisotropic(std::vector< double > const &variance, std::vector< double > const &data_mean, size_t num_observe=1)
Constructs the class and calls setData().
Definition: tsgDreamLikelyGaussian.hpp:144
void getLikelihood(TypeSamplingForm form, std::vector< double > const &model, std::vector< double > &likely) const override final
Compute the likelihood of a set of model outputs.
~LikelihoodGaussAnisotropic()=default
Default destructor.
void write(std::ostream &os, int outputs_begin=0, int outputs_end=-1) const
Writes the data for a portion of the outputs into a stream.
Definition: tsgDreamLikelyGaussian.hpp:172
void setData(std::vector< double > const &variance, std::vector< double > const &data_mean, size_t num_observe=1)
Set the noise magnitude (variance) the observed data (data_mean) and number of observations (num_obse...
Implements likelihood under the assumption of isotropic white noise.
Definition: tsgDreamLikelyGaussian.hpp:59
void getLikelihood(TypeSamplingForm form, const std::vector< double > &model, std::vector< double > &likely) const override final
Compute the likelihood of a set of model outputs.
~LikelihoodGaussIsotropic()=default
Default destructor.
LikelihoodGaussIsotropic(double variance, const std::vector< double > &data_mean, size_t num_observe=1)
Constructs the class and calls setData().
Definition: tsgDreamLikelyGaussian.hpp:64
void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final
Overload for raw-arrays, for interface purposes mostly, e.g., python.
LikelihoodGaussIsotropic()
Default constructor for convenience, an object constructed with the default cannot be used until setD...
Definition: tsgDreamLikelyGaussian.hpp:62
int getNumOutputs() const override
Returns the size of the data_mean vector (for error checking purposes).
Definition: tsgDreamLikelyGaussian.hpp:86
void read(std::istream &is)
Reads the data from a stream, assumes write() has been used first.
Definition: tsgDreamLikelyGaussian.hpp:111
void setData(double variance, const std::vector< double > &data_mean, size_t num_observe=1)
Set the noise magnitude (varaince) the observed data (data_mean) and number of observations (num_obse...
void write(std::ostream &os, int outputs_begin=0, int outputs_end=-1) const
Writes the data for a portion of the outputs into a stream.
Definition: tsgDreamLikelyGaussian.hpp:101
Interface for the likelihood classes.
Definition: tsgDreamLikelihoodCore.hpp:68
TypeSamplingForm
Describes whether sampling should be done with the regular or logarithm form of the probability densi...
Definition: tsgDreamEnumerates.hpp:90
Encapsulates the Tasmanian DREAM module.
Definition: TasmanianDREAM.hpp:80