Doxygen 1.9.8
Toolkit for Adaptive Stochastic Modeling and Non-Intrusive ApproximatioN: Tasmanian v8.2
 
Loading...
Searching...
No Matches
tsgDreamLikelyGaussian.hpp
1/*
2 * Copyright (c) 2017, Miroslav Stoyanov
3 *
4 * This file is part of
5 * Toolkit for Adaptive Stochastic Modeling And Non-Intrusive ApproximatioN: TASMANIAN
6 *
7 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
12 * and the following disclaimer in the documentation and/or other materials provided with the distribution.
13 *
14 * 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
20 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
21 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 *
24 * UT-BATTELLE, LLC AND THE UNITED STATES GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED.
25 * THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT,
26 * COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE.
27 * THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF,
28 * IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.
29 */
30
31#ifndef __TASMANIAN_DREAM_LIKELY_GAUSS_HPP
32#define __TASMANIAN_DREAM_LIKELY_GAUSS_HPP
33
34#include "tsgDreamLikelihoodCore.hpp"
35
45namespace TasDREAM{
46
49
60public:
62 LikelihoodGaussIsotropic() : scale(0.0){}
64 LikelihoodGaussIsotropic(double variance, const std::vector<double> &data_mean, size_t num_observe = 1){ setData(variance, data_mean, num_observe); }
67
77 void setData(double variance, const std::vector<double> &data_mean, size_t num_observe = 1);
78
80 void getLikelihood(TypeSamplingForm form, const std::vector<double> &model, std::vector<double> &likely) const override final;
81
83 void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final;
84
86 int getNumOutputs() const override{ return (int) data.size(); }
87
101 void write(std::ostream &os, int outputs_begin = 0, int outputs_end = -1) const{
102 if (outputs_end < 0) outputs_end = getNumOutputs();
103 outputs_end = std::min(std::max(outputs_begin + 1, outputs_end), getNumOutputs());
104 int num_entries = outputs_end - outputs_begin;
105 TasGrid::IO::writeNumbers<TasGrid::mode_binary, TasGrid::IO::pad_none>(os, num_entries);
106 TasGrid::IO::writeNumbers<TasGrid::mode_binary, TasGrid::IO::pad_none>(os, scale);
107 os.write((char*) &data[outputs_begin], num_entries * sizeof(double));
108 }
109
111 void read(std::istream &is){
112 int num_entries = TasGrid::IO::readNumber<TasGrid::IO::mode_binary_type, int>(is);
113 scale = TasGrid::IO::readNumber<TasGrid::IO::mode_binary_type, double>(is);
114 data = std::vector<double>((size_t) num_entries);
115 TasGrid::IO::readVector<TasGrid::IO::mode_binary_type>(is, data);
116 }
117
118private:
119 std::vector<double> data;
120 double scale;
121};
122
140public:
144 LikelihoodGaussAnisotropic(std::vector<double> const &variance, std::vector<double> const &data_mean, size_t num_observe = 1){ setData(variance, data_mean, num_observe); }
147
156 void setData(std::vector<double> const &variance, std::vector<double> const &data_mean, size_t num_observe = 1);
157
159 void getLikelihood(TypeSamplingForm form, std::vector<double> const &model, std::vector<double> &likely) const override final;
160
162 void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final;
163
165 int getNumOutputs() const override{ return (int) noise_variance.size(); }
166
172 void write(std::ostream &os, int outputs_begin = 0, int outputs_end = -1) const{
173 if (outputs_end < 0) outputs_end = getNumOutputs();
174 outputs_end = std::min(std::max(outputs_begin + 1, outputs_end), getNumOutputs());
175 int num_entries = outputs_end - outputs_begin;
176 TasGrid::IO::writeNumbers<TasGrid::mode_binary, TasGrid::IO::pad_none>(os, num_entries);
177 os.write((char*) &data_by_variance[outputs_begin], num_entries * sizeof(double));
178 os.write((char*) &noise_variance[outputs_begin], num_entries * sizeof(double));
179 }
180
182 void read(std::istream &is){
183 int num_entries = TasGrid::IO::readNumber<TasGrid::IO::mode_binary_type, int>(is);
184 data_by_variance = std::vector<double>((size_t) num_entries);
185 noise_variance = std::vector<double>((size_t) num_entries);
186 TasGrid::IO::readVector<TasGrid::IO::mode_binary_type>(is, data_by_variance);
187 TasGrid::IO::readVector<TasGrid::IO::mode_binary_type>(is, noise_variance);
188 }
189
190private:
191 std::vector<double> data_by_variance;
192 std::vector<double> noise_variance;
193};
194
195
196}
197
198#endif
Implements likelihood under the assumption of anisotropic white noise.
Definition tsgDreamLikelyGaussian.hpp:139
int getNumOutputs() const override
Returns the size of the data_mean vector (for error checking purposes).
Definition tsgDreamLikelyGaussian.hpp:165
void read(std::istream &is)
Reads the data from a stream, assumes write() has been used first.
Definition tsgDreamLikelyGaussian.hpp:182
LikelihoodGaussAnisotropic()=default
Default constructor for convenience, an object constructed with the default cannot be used until setD...
void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final
Overload for raw-arrays, for interface purposes mostly, e.g., python.
LikelihoodGaussAnisotropic(std::vector< double > const &variance, std::vector< double > const &data_mean, size_t num_observe=1)
Constructs the class and calls setData().
Definition tsgDreamLikelyGaussian.hpp:144
void getLikelihood(TypeSamplingForm form, std::vector< double > const &model, std::vector< double > &likely) const override final
Compute the likelihood of a set of model outputs.
~LikelihoodGaussAnisotropic()=default
Default destructor.
void write(std::ostream &os, int outputs_begin=0, int outputs_end=-1) const
Writes the data for a portion of the outputs into a stream.
Definition tsgDreamLikelyGaussian.hpp:172
void setData(std::vector< double > const &variance, std::vector< double > const &data_mean, size_t num_observe=1)
Set the noise magnitude (variance) the observed data (data_mean) and number of observations (num_obse...
Implements likelihood under the assumption of isotropic white noise.
Definition tsgDreamLikelyGaussian.hpp:59
void getLikelihood(TypeSamplingForm form, const std::vector< double > &model, std::vector< double > &likely) const override final
Compute the likelihood of a set of model outputs.
~LikelihoodGaussIsotropic()=default
Default destructor.
LikelihoodGaussIsotropic(double variance, const std::vector< double > &data_mean, size_t num_observe=1)
Constructs the class and calls setData().
Definition tsgDreamLikelyGaussian.hpp:64
void getLikelihood(TypeSamplingForm form, double const model[], int num_samples, double likely[]) const override final
Overload for raw-arrays, for interface purposes mostly, e.g., python.
LikelihoodGaussIsotropic()
Default constructor for convenience, an object constructed with the default cannot be used until setD...
Definition tsgDreamLikelyGaussian.hpp:62
int getNumOutputs() const override
Returns the size of the data_mean vector (for error checking purposes).
Definition tsgDreamLikelyGaussian.hpp:86
void read(std::istream &is)
Reads the data from a stream, assumes write() has been used first.
Definition tsgDreamLikelyGaussian.hpp:111
void setData(double variance, const std::vector< double > &data_mean, size_t num_observe=1)
Set the noise magnitude (varaince) the observed data (data_mean) and number of observations (num_obse...
void write(std::ostream &os, int outputs_begin=0, int outputs_end=-1) const
Writes the data for a portion of the outputs into a stream.
Definition tsgDreamLikelyGaussian.hpp:101
Interface for the likelihood classes.
Definition tsgDreamLikelihoodCore.hpp:68
TypeSamplingForm
Describes whether sampling should be done with the regular or logarithm form of the probability densi...
Definition tsgDreamEnumerates.hpp:90
Encapsulates the Tasmanian DREAM module.
Definition TasmanianDREAM.hpp:80