
Application

Characterization

using

Oxbow Toolkit

and

PADS Infrastructure

Sarat Sreepathi, Megan Grodowitz,
Robert Lim, Philip Taffet, Philip
Roth, Jeremy Meredith, Seyong Lee,
Dong Li, Jeffrey S. Vetter (PI)

Co-HPC Workshop

November 17 2014

http://ft.ornl.gov

http://ft.ornl.gov/

2 Oxbow Project

Oxbow Project Overview

• Exascale architects and
software developers need
specific information about
current and future DOE
workloads

• Previous work developed a
systemic process to
investigate workload
properties, resulting in
new insights

• Oxbow project work
pursues several
interconnected goals
– To characterize applications

and proxy application in
new ways and from many
angles

– To create a shared, open
data store so that a
community of researchers
can share and compare
results

– To solicit feedback from the
community on methods,
metrics, applications, and
tools

– To evolve the toolkit to
capture new application
features

3 Oxbow Project

Oxbow Workflow Overview

Application Metrics:

• Computation

– Instruction mix

• Communication

– MPI Point to
Point

– MPI Collective

• Memory

– Reuse Distance

– Bandwidth
estimate

Compute
Platform(s)

Data Store
Visual

Analytics
Portal

Execute application(s)
using Oxbow toolset.

Collect application metrics:
computation, memory,
communication…

Collect system statistics:
processor type, memory
hierarchy, network

Tools produce results with
human readable summary
plus raw data files.

Store results with various
meta-data: application,
version, job size, date…

Automate uploads as part
of Oxbow tool-chain
(optional).

Retrieve previous
experiment data by
metadata.

Collaborate to share
results with other users.

Explore dynamic
visualization of experiment
data with desktop or mobile
browser.

Download experiment data,
or save data plot images.

Upload experiment data
through web interface.

System Statistics:

• Processor Type

– Speed

– Vendor/Architec
ture

• Memory Hierarchy

– Cache
Sizes/Layout

– DRAM sizes

• Network

– Protocol

– Speed

4 Oxbow Project

Application Coverage

• Phase 1 (tools only): Q3 2012 – Q2 2013

– HPCC Benchmark kernels

– AMG unstructured grid linear solver

– Nekbone Fluid dynamic proxy application of
Nek5000

– MOCFE neutron transport simulation

– LULESH shock hydrodynamics code

– S3D turbulent combustion numerical modelling

– SPASM short range molecular dynamics

– GTC particle-in-cell method

– ddcMD classical molecular dynamics

– LAMMPS large scale atomic/molecular
dynamics simulation

– Nek500 computational fluid dynamics solver

– POP Ocean circulation model

• Phase 2 (web infrastructure): Q3 2013 – Q3 2014

– XSBench reactor core particle transport cross section
lookup proxy application for OpenMC

– HPCG sparse matrix solver, new top500 benchmark

– AMGmk kernels from AMG application perform sparse
matrix vector multiply, mesh relaxation, vector dot
product

– NEKbonemk microkernel from Nekbone and SIMD
compiler challenge

– UMT / UMTmk performs three dimensional, non
linear, radiation transport calculations using
deterministic (Sn) method

– KMI Hash generate and do series of lookups on
database of genome sequences

– QMCPack quantum monte carlo simulation code

– miniAMR adaptive mesh refinement miniapp

– BoxLib adaptive mesh refinement proxy application
set

– LSMS first principles ground calculations of solid state
systems using WL Monte Carlo walkers method

– MPAS Climate modeling

– EAVL Big data visualization and analysis

– Visit visualization tool

– MCB simple heuristic transport modeling using Monte
Carlo methods

– RSBench neutronics proxy application

Upload tool data from
command line

NoSQL database
deployment

Unified build system for
all tools

5 Oxbow Project

Web Portal Design

Replicated

NoSQL

Database

Web

(Browser)

User

Terminal

(Command Line) User

Proxy/

Gateway

Server

Internet

Application Server

(Web Portal)

6 Oxbow Project

Computation

7 Oxbow Project

Computation Characterization

• Instruction Mix Tool
– Decode native x86 instructions into RISC-like micro-

operations
• Benefits

–Actual instruction stream after compiler optimizations

–Captures compiler generated auxiliary instructions (address
arithmetic, spill/unspill, etc.)

• Caveats
–Mix impacted by compiler optimizations / architecture choices

–Can be difficult to attribute results to application structures,
components

– Group instructions into coarse categories:
• Memory, integer & floating-point arithmetic, register

moves, branches, other

8 Oxbow Project

Computation Characterization

Recent Results

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

MemOps Mem SIMD FlOps IntOps Fp SIMD Int SIMD Moves BrOps Misc

P
er

ce
n

ta
g

e

Instruction Mix Comparison
CORAL and Benchmarks AMGMk-1.0

NEKbonemk-
2.0
UMTmk-1.2-
large
Hash-16p

XSBench

QMCPack

HPCG-2.1-
1hr
HPL

MemOps Mem SIMD FlOps IntOps Fp SIMD Int SIMD Moves BrOps Misc

AMGMk-1.0 23.58 2.25 5.16 38.10 1.45 0.00 11.65 17.81 0.00

NEKbonemk-2.0 20.55 1.09 22.61 16.53 5.94 0.00 27.36 5.93 0.00

UMTmk-1.2-large 23.22 0.50 0.24 51.69 0.37 0.03 7.33 16.62 0.01

Hash-16p 32.38 0.08 0.00 38.31 0.00 0.02 12.63 15.92 0.64

XSBench 30.48 0.00 2.02 34.75 0.00 0.00 17.82 14.27 0.66

QMCPack 23.50 11.34 16.92 9.76 15.01 0.56 18.70 3.94 0.28

HPL 0.9 19.2 0.1 3.1 60.2 0 15.7 0.8 0

HPCG-2.1-1hr 31.85 0.040 17.76 19.23 0.002 0.40 24.034 6.62 0.036

HPCG shows a good

match for typical

applications, heavy on

memory and moves, with

moderate floating point and

integer operations.

HPCG matches well with

QMCPack, despite

implementing very different

problem type.

Surprisingly, HASH and

UMTmk are very similar,

despite one being a

microkernel and the other

being a data-centric

application

Nekbone is markedly different from the other

microkernels. It more closely matches QMCPack

and HPCG.

9 Oxbow Project

Computation Characterization

Recent Results + AMR codes

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

MemOps Mem SIMD FlOps IntOps Fp SIMD Int SIMD Moves BrOps Misc

P
er

ce
n

ta
g

e

Instruction Mix Comparison - AMR apps

BoxLibMiniAMR - inputs_2d BoxLibMiniAMR - inputs_3d miniAMR - sphere-diagonal-27p

miniAMR - expanding-sphere-64p miniAMR - two-spheres-16p Exp_CNS_NoSpec

vodeDriver HPL HPCG-2.1-1hr

MemOps Mem SIMD FlOps IntOps Fp SIMD Int SIMD Moves BrOps Misc

BoxLibMiniAMR - inputs_2d 35.94 0.06 4.73 36.08 1.12 0.03 9.78 12.15 0.11

BoxLibMiniAMR - inputs_3d 28.30 0.07 10.73 38.26 2.53 0.00 8.48 11.56 0.07

Exp_CNS_NoSpec 23.22 21.91 4.96 11.99 29.53 0.00 2.56 5.83 0.00

miniAMR - two-spheres-16p 48.01 0.60 7.02 21.26 3.19 0.00 9.66 10.26 0.00

miniAMR - sphere-diagonal-27p 44.69 0.56 7.36 23.95 2.75 0.00 9.04 11.64 0.01

miniAMR - expanding-sphere-64p 41.18 0.15 0.51 31.15 0.24 0.02 11.08 15.66 0.01

vodeDriver 24.64 5.91 18.77 22.05 8.22 1.87 10.57 7.91 0.06

HPL 0.9 19.2 0.1 3.1 60.2 0 15.7 0.8 0

HPCG-2.1-1hr 31.86 0.04 17.77 19.24 0.00 0.40 24.03 6.62 0.04

HPCG does a reasonable

job at representing

vodeDriver.

HPL represents

EXP_CNS_NoSpec

instruction mix

Other AMR miniapps are so

Integer intensive that neither

top500 benchmark matches

particularly well to

computational requirements

10 Oxbow Project

Comparing Top 500 benchmarks

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

MemOps Mem SIMD FlOps IntOps Fp SIMD Int SIMD Moves BrOps Misc

P
er

ce
n

ta
ge

Instruction Mix Comparison
HPCG 2.1 vs. HPL

HPCG-2.1-1hr

HPL

A closer look at the differences between

HPL and HPCG shows that HPCG uses

much fewer SIMD optimizations, and

increases memory operations

11 Oxbow Project

Instruction mix comparisons
Exp_CNS_NoSpec

(CFD:Compressible

Navier-Stokes) and

HPL are similar

HPCG and VisIt mostly

differ in the percentage

of Int SIMD and FlOps

instructions.

Moreover, VisIt is an

outlier among the

instruction mix profiles

with 10.26% Int SIMD

instructions

12 Oxbow Project

Instruction Mix Clustering

As the amount of disparate experimental data grows, traditional method of comparing

results become more difficult, less revealing of larger relationships. Clustering reveals

relationships between many different experiments with different experimental designs.

13 Oxbow Project

Communication

14 Oxbow Project

Communication Characterization with

Enhanced mpiP

• Lightweight tool for profiling MPI
operations
– Supports MPI communications and I/O

– Link-time library, uses PMPI profiling
interface

– Measures time spent, number of calls
to MPI operations aggregated by call
site

– http://sourceforge.net/projects/mpip

• Used enhanced mpiP
– Captures communication topology,

message size histograms for point-to-
point operations

– Captures message size histograms for
collective operations

Data from AMG2000 benchmark running on

Keeneland Initial Delivery System

Pattern indicates a mostly nearest neighbor

communication pattern with some extended

communications

http://sourceforge.net/projects/mpip

15 Oxbow Project

HPCG & HPL Communication Volume

• Pattern characteristics:

– HPCG: Wider spread indicates communication
beyond just nearest neighbors

– HPL: Communication spread throughout

• Compared to other apps

– Lack of random scattering is similar to other
benchmarks. Real applications are not so
orderly

– HPCG is more similar to other apps than HPL,
which does not resemble realistic
communication

• Observations from using multiple tools

– HPCG instruction mix matches applications,
but differences appear when looking at
communication

• Implications for system design

– System optimized for HPL comm pattern
would try to balance communication between
all nodes

– System optimized HPCG comm pattern would
emphasize tight locality of communication

– Applications with scattered communication
(like Nek5000) might need different system
capabilities

HPL

HPCG

16 Oxbow Project

Nek: Communication patterns

Nekbone : communication

behavior doesn’t change

much between scenarios

Nek5000: Some

configurations resemble

Nekbone very closely.

Other configurations

(vortex) show very different

communication patterns.

As with other results, real

applications can create

more asymmetric patterns,

whereas proxy apps tend to

be very symmetrical.

Nek5000, 128 tasks (from PBMS13 results) Nek5000 eddy, 64 tasks

Nek5000 vortex, 64 tasks
Nekbone multigrid

preconditioner, 64 tasks

17 Oxbow Project

AMR proxy applications

miniAMR two spheres

(16 ranks)

miniAMR expanding sphere

(64 ranks)

miniAMR sphere diagonal

(27 ranks)

BoxLib: AMR_Adv_Diff

inputs_3d_regrid_none (64

rank)

• Different inputs generate very
different communication
patterns

• Neither HPL nor HPCG represent
the communication patterns of
AMR apps with objects in
motion

• Aids in validation of expected
communication behavior

BoxLib: AMR_Adv_Diff

inputs_3d_regrid_4ts (64

rank)

18 Oxbow Project

Memory Tools Overview

19 Oxbow Project

Memory Access Characterization

• Memory Bandwidth

– Mreq – # memory requests, Sreq – request size, T –
time

– Memory request count and execution time
measured using hardware performance counters

• Using two start() and stop() caliper functions
– Based on PAPI
– Caliper calls inserted around code region of

interest

Bdwth =
MreqSreq

T

20 Oxbow Project

Memory Access Characterization

– Reuse Distance: the number of distinctive data elements
accessed between two consecutive references to the same
element

–

– Fig courtesy of the paper “Predicting Whole-Program Locality through Reuse
Distance Analysis”

• Benefits of using reuse distance
– Quantify program locality
– Allows direct comparison of data behavior across applications

• Challenges
– High time cost (O (N2) for a memory trace of length N)
– High storage cost (O (N) for a memory trace of length N)

21 Oxbow Project

Portal

22 Oxbow Project

Home

23 Oxbow Project

Apps – Static analysis data

24 Oxbow Project

Instruction Mix

25 Oxbow Project

Communication

26 Oxbow Project

Communication Details

27 Oxbow Project

Clustering

28 Oxbow Project

Memory Bandwidth

29 Oxbow Project

Experiments

Download

30 Oxbow Project

Summary

• Oxbow + PADS: Collaboration platform for domain scientists, applied mathematicians, computer
scientists, and hardware architects interested in Co-Design.

• Infrastructure provides ability to track changes over different software versions and problem
configurations and easily identify interesting correlations across applications

• Tools can show surprising similarities and differences between application behaviors

– Instruction mix of UMTmk and HASH are very similar, despite one being a microkernel and the other being a data-
centric application

– HPL instruction mix does not reflect most applications, even microkernels behave differently. HPCG does better.

• Tools can show surprising behavior in a given application and help in validation

– Communication patterns deviate from expected behavior

• Tools can predict what kinds of system attributes will be selected by testing a given system with
a given application

– HPL will perform best on systems with good support for SIMD instructions

– HPCG will perform best on systems with support for localized communication and a mix of memory, move, floating
point, and integer operations

• Multiple tools can show similarities and differences for different machine subsystems

– Instruction mix may be very similar between applications, showing similar on-node characteristics

– Communication patterns may be very different, showing different intra-node system requirements

31 Oxbow Project

Acknowledgements

• Contributors and Sponsors
– Future Technologies Group: http://ft.ornl.gov

– US National Science Foundation Keeneland Project:
http://keeneland.gatech.edu

– US Department of Energy Office of Science
• DOE ExMatEx Codesign Center: http://codesign.lanl.gov

• DOE Cesar Codesign Center: http://cesar.mcs.anl.gov/

• DOE Exascale Efforts:
http://science.energy.gov/ascr/research/computer-science/

http://ft.ornl.gov/
http://keeneland.gatech.edu/
http://codesign.lanl.gov/
http://cesar.mcs.anl.gov/
http://science.energy.gov/ascr/research/computer-science/

32 Oxbow Project

Project website

http://oxbow.ornl.gov

Sarat Sreepathi

sarat@ornl.gov

Jeffrey Vetter

vetter@ornl.gov

33 Oxbow Project

Backup

34 Oxbow Project

Platform info

35 Oxbow Project

Tracking changes in behavior over

different versions and durations

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

MemOps Mem
SIMD

FlOps IntOps Fp SIMD Int SIMD Moves BrOps Misc

P
er

ce
n

ta
ge

Instruction Mix Comparison
HPCG 1.1 vs. 2.1 - Duration 1hr & 1min

HPCG-1.1-1hr

HPCG-2.1-1hr

HPCG-1.1-1min

HPCG-2.1-1min

As applications evolve, the characteristics

may change. Here, HPCG evolution from

the initial alpha release to the current

release shows optimizations to reduce

branching instructions and integer

operations

Benchmark behavior is expected to

change when running for a sufficient

amount of time. The instruction mix

differences are not dramatic between 1

minute and 1 hour. A slight increase in the

percentage of floating point operations

reflects more time spent in the main CG

solver loop.

36 Oxbow Project

Memory Reuse Results

Nek5000 appears to

have better reuse

compared to Nekbone

Reuse distance

%
 o

f
to

ta
l
a

c
c
e

s
s
e

s

37 Oxbow Project

Communication Volume

Average volume of point to point communication. Color scale is consistent across all plots

LAAMPS: The same

application may

exhibit very different

communication

patterns for different

problem

configurations

RandomAccess: Pattern is not the expected

monochromatic random scatter due to in-source

communication optimization

Nekbone (old version -

2012) vs Nek5000:

proxy application

differs from modelled

application in

communication

behavior.

38 Oxbow Project

Observations

• Tools can show surprising similarities and differences between application behaviors

– HPL instruction mix does not reflect most applications, even microkernels behave differently

– HPCG instruction mix more closely resembles other applications than does HPL, even applications implementing
very different algorithms

• Tools can show surprising behavior in a given application

– Many application perform well below system peak memory capacity

• Tools can predict what kinds of system attributes will be selected by testing a given system with a
given application

– HPL will perform best on systems with good support for SIMD instructions

– HPCG will perform best on systems with support for localized communication and a mix of memory, move, floating
point, and integer operations

– POP and Nek5000 will benefit from systems with support for more randomized, scattered communication

• Multiple tools can show similarities and differences for different machine subsystems

– Instruction mix may be very similar between applications, showing similar on-node characteristics

– Communication patterns may be very different, showing different intra-node system requirements

– E.g. HPCG instruction mix matches other applications, but communication volume resembles other benchmarks
more than it resembles full applications.

• Tools can track changes over different software versions and problem configurations

– Version optimization of HPCG has reduced branching behavior, without other significant changes.

– LAMMPS communication patterns are very different for different benchmark problems

