Application Characterization using Oxbow Toolkit and PADS Infrastructure

<u>Sarat Sreepathi</u>, <u>Megan Grodowitz</u>, Robert Lim, Philip Taffet, Philip Roth, Jeremy Meredith, Seyong Lee, Dong Li, Jeffrey S. Vetter (PI)

Co-HPC Workshop

November 17 2014

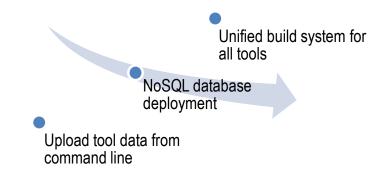
http://ft.ornl.gov

Oxbow Project Overview

- Exascale architects and software developers need specific information about current and future DOE workloads
- Previous work developed a systemic process to investigate workload properties, resulting in new insights

- Oxbow project work pursues several interconnected goals
 - To characterize applications and proxy application in new ways and from many angles
 - To create a shared, open data store so that a community of researchers can share and compare results
 - To solicit feedback from the community on methods, metrics, applications, and tools
 - To evolve the toolkit to capture new application features

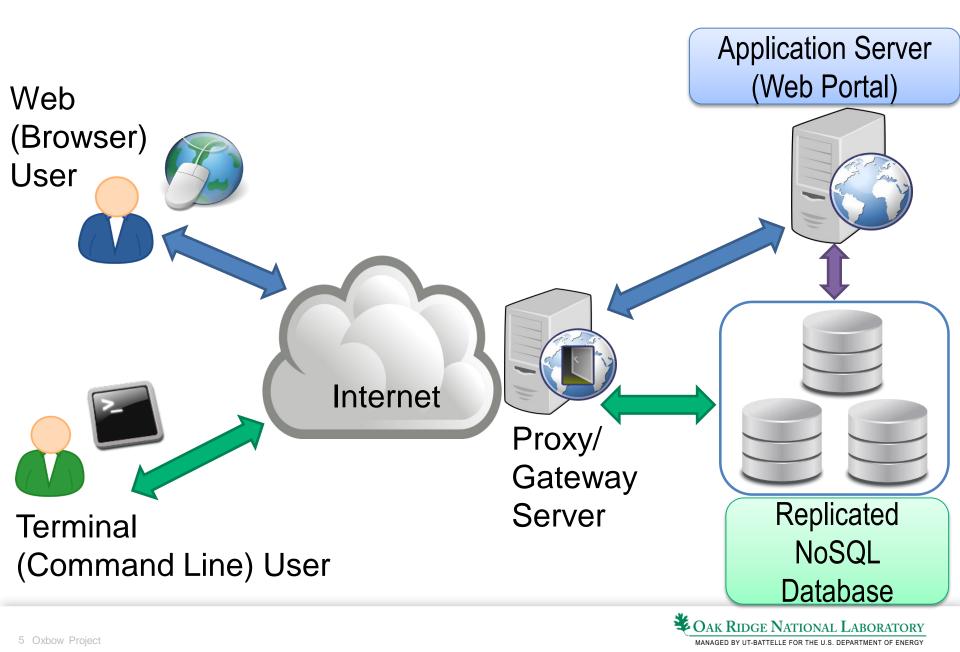
Oxbow Workflow Overview


Application Metrics: Computation Instruction mix Communication MPI Point to Point MPI Collective	Compute Platform(s)	Data Store	Visual Analytics Portal
 Memory Reuse Distance Bandwidth estimate 	Execute application(s) using Oxbow toolset.	Store results with various <u>meta-data</u> : <i>application, version, job size, date</i>	Explore dynamic visualization of experiment data with desktop or mobile browser.
System Statistics: Processor Type – Speed	Collect <u>application</u> metrics: computation, memory, communication	Automate uploads as part of Oxbow tool-chain (optional).	Download experiment data, or save data plot images.
 Vendor/Architec ture Memory Hierarchy Cache Sizes/Layout 	Collect <u>system</u> statistics: processor type, memory hierarchy, network	Retrieve previous experiment data by metadata.	Upload experiment data through web interface.
DRAM sizes Network Protocol Speed	Tools produce results with human readable summary plus raw data files.	Collaborate to share results with other users.	

CAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

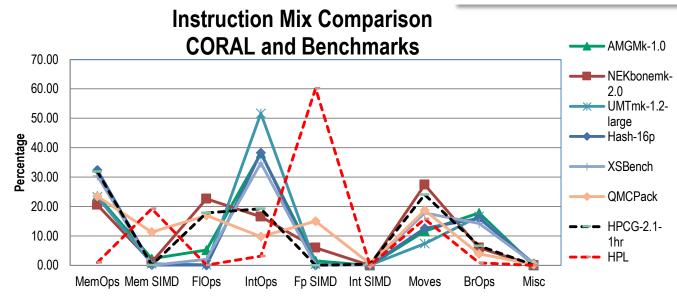
Application Coverage


- Phase 1 (tools only): Q3 2012 Q2 2013
 - HPCC Benchmark kernels
 - AMG unstructured grid linear solver
 - Nekbone Fluid dynamic proxy application of Nek5000
 - MOCFE neutron transport simulation
 - LULESH shock hydrodynamics code
 - S3D turbulent combustion numerical modelling
 - SPASM short range molecular dynamics
 - GTC particle-in-cell method
 - ddcMD classical molecular dynamics
 - LAMMPS large scale atomic/molecular dynamics simulation
 - Nek500 computational fluid dynamics solver
 - POP Ocean circulation model

- Phase 2 (web infrastructure): Q3 2013 Q3 2014
 - XSBench reactor core particle transport cross section lookup proxy application for OpenMC
 - HPCG sparse matrix solver, new top500 benchmark
 - AMGmk kernels from AMG application perform sparse matrix vector multiply, mesh relaxation, vector dot product
 - NEKbonemk microkernel from Nekbone and SIMD compiler challenge
 - UMT / UMTmk performs three dimensional, non linear, radiation transport calculations using deterministic (Sn) method
 - KMI Hash generate and do series of lookups on database of genome sequences
 - QMCPack quantum monte carlo simulation code
 - miniAMR adaptive mesh refinement miniapp
 - BoxLib adaptive mesh refinement proxy application set
 - LSMS first principles ground calculations of solid state systems using WL Monte Carlo walkers method
 - MPAS Climate modeling
 - EAVL Big data visualization and analysis
 - Visit visualization tool
 - MCB simple heuristic transport modeling using Monte Carlo methods
 - RSBench neutronics proxy application

Web Portal Design

Computation

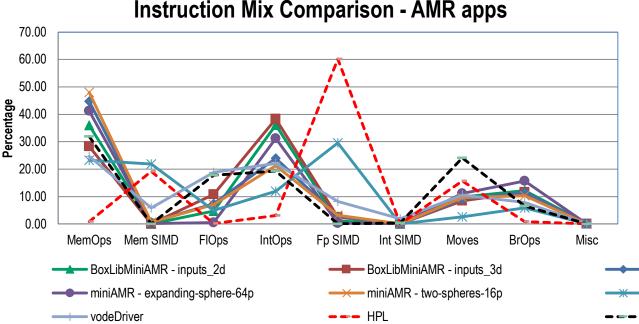

Computation Characterization

- Instruction Mix Tool
 - Decode native x86 instructions into RISC-like microoperations
 - Benefits
 - -Actual instruction stream after compiler optimizations
 - Captures compiler generated auxiliary instructions (address arithmetic, spill/unspill, etc.)
 - Caveats
 - -Mix impacted by compiler optimizations / architecture choices
 - Can be difficult to attribute results to application structures, components
 - Group instructions into coarse categories:
 - Memory, integer & floating-point arithmetic, register moves, branches, other

Computation Characterization Recent Results

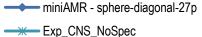
Nekbone is markedly different from the other microkernels. It more closely matches QMCPack and HPCG.

HPCG shows a good match for typical applications, heavy on memory and moves, with moderate floating point and integer operations.


HPCG matches well with QMCPack, despite implementing very different problem type.

	MemOps	Mem SIMD	FIOps	IntOps	Fp SIMD	Int SIMD	Moves	BrOps	Misc
AMGMk-1.0	23.58	2.25	5.16	38.10	1.45	0.00	11.65	17.81	0.00
NEKbonemk-2.0	20.55	1.09	22.61	16.53	5.94	0.00	27.36	5.93	0.00
UMTmk-1.2-large	23.22	0.50	0.24	51.69	0.37	0.03	7.33	16.62	0.01
Hash-16p	32.38	0.08	0.00	38.31	0.00	0.02	12.63	15.92	0.64
XSBench	30.48	0.00	2.02	34.75	0.00	0.00	17.82	14.27	0.66
QMCPack	23.50	11.34	16.92	9.76	15.01	0.56	18.70	3.94	0.28
HPL	0.9	19.2	0.1	3.1	60.2	0	15.7	0.8	0
HPCG-2.1-1hr	31.85	0.040	17.76	19.23	0.002	0.40	24.034	6.62	0.036

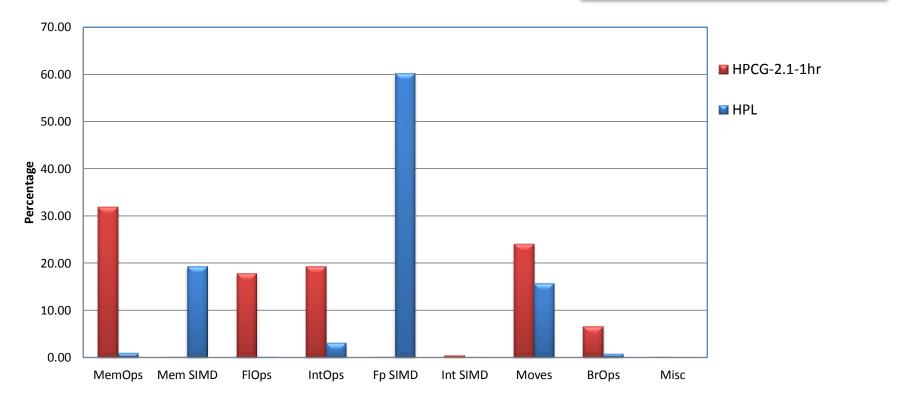
Surprisingly, HASH and UMTmk are very similar, despite one being a microkernel and the other being a data-centric application


Computation Characterization Recent Results + AMR codes

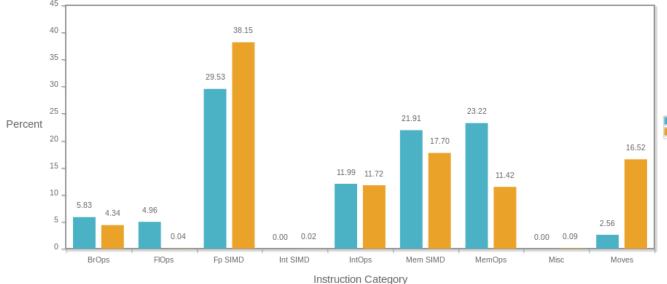
HPCG does a reasonable job at representing vodeDriver.

HPL represents EXP_CNS_NoSpec instruction mix

Other AMR miniapps are so Integer intensive that neither top500 benchmark matches particularly well to computational requirements


- ← HPCG-2.1-1hr

	MemOps	Mem SIMD	FIOps	IntOps	Fp SIMD	Int SIMD	Moves	BrOps I	Misc
BoxLibMiniAMR - inputs_2d	35.94	1 0.06	6 4.73	3 36.08	3 1.12	2 0.03	9.78	12.15	0.11
BoxLibMiniAMR - inputs_3d	28.30	0.07	7 10.73	3 38.26	6 2.53	3 0.00	8.48	11.56	0.07
Exp_CNS_NoSpec	23.22	2 21.91	1 4.96	5 11.99	9 29.53	3 0.00	2.56	5.83	0.00
miniAMR - two-spheres-16p	48.01	0.60) 7.02	2 21.26	3.19	0.00	9.66	10.26	0.00
miniAMR - sphere-diagonal-27p	44.69	9 0.56	5 7.36	6 23.95	5 2.75	5 0.00	9.04	11.64	0.01
miniAMR - expanding-sphere-64p	41.18	.15	5 0.51	1 31.15	5 0.24	0.02	11.08	15.66	0.01
vodeDriver	24.64	1 5.91	1 18.77	7 22.05	5 8.22	2 1.87	10.57	7.91	0.06
HPL	0.9	9 19.2	2 0.1	1 3.1	1 60.2	2 0	15.7	0.8	0
HPCG-2.1-1hr	31.86	6 0.04	4 17.77	7 19.24	4 0.00	0.40	24.03	6.62	0.04


Comparing Top 500 benchmarks

Instruction Mix Comparison HPCG 2.1 vs. HPL A closer look at the differences between HPL and HPCG shows that HPCG uses much fewer SIMD optimizations, and increases memory operations

Instruction mix comparisons

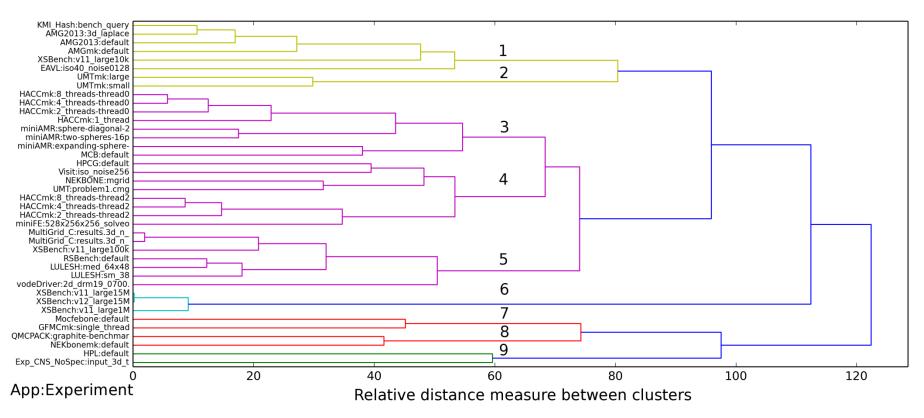
30 27.14 27.00 26.92 26.11 25 19.91 20 17.43 15.21 Percent 15 13.16 10.80 10.26 10 5 3.45 2.53 0.02 0.01 0.01 0.02 0.01 0.00 0 BrOps FIOps Fp SIMD Int SIMD IntOps Mem SIMD MemOps Misc Moves Instruction Category

Exp_CNS_NoSpec (CFD:Compressible Navier-Stokes) and HPL are similar

HPL : default

HPCG and Vislt mostly differ in the percentage of Int SIMD and FIOps instructions.

HPCG : default


Visit : iso noise256

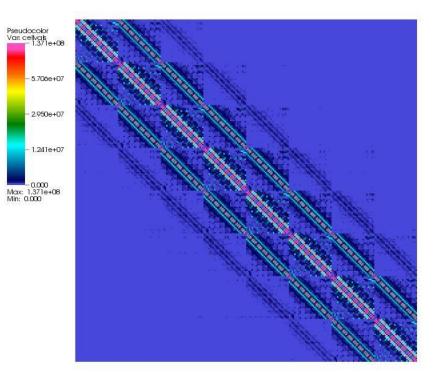
Moreover, Vislt is an outlier among the instruction mix profiles with 10.26% Int SIMD instructions

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Instruction Mix Clustering

Dendrogram: Hierarchical Clustering

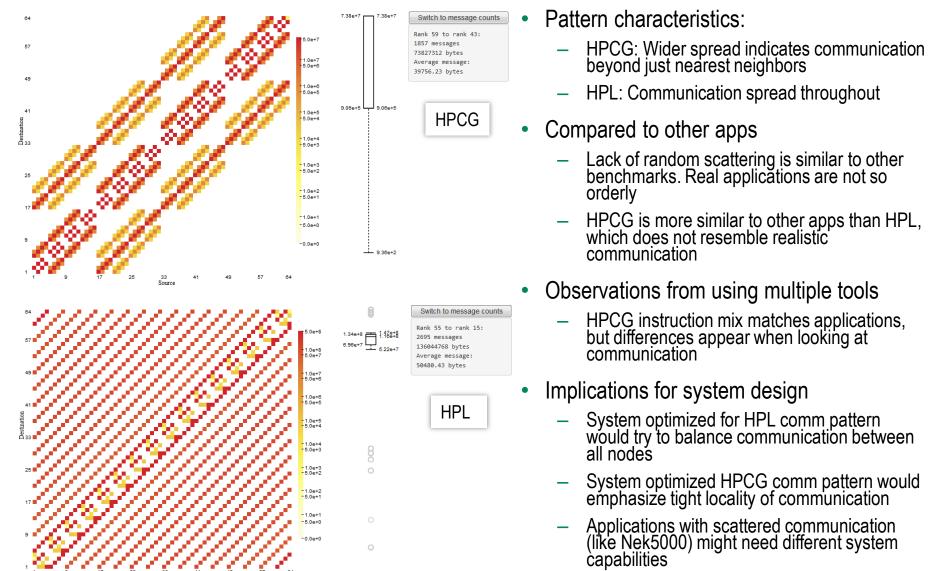
As the amount of disparate experimental data grows, traditional method of comparing results become more difficult, less revealing of larger relationships. Clustering reveals relationships between many different experiments with different experimental designs.



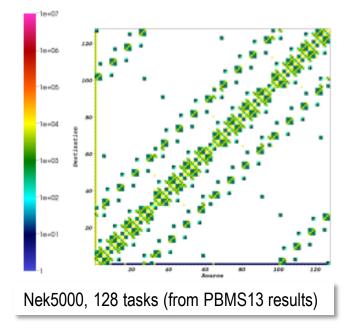
Communication

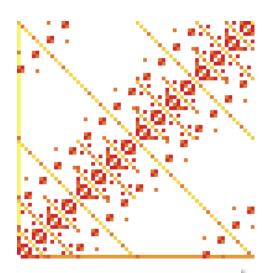
Communication Characterization with Enhanced mpiP

- Lightweight tool for profiling MPI operations
 - Supports MPI communications and I/O
 - Link-time library, uses PMPI profiling interface
 - Measures time spent, number of calls to MPI operations aggregated by call site
 - <u>http://sourceforge.net/projects/mpip</u>
- Used enhanced mpiP
 - Captures communication topology, message size histograms for point-topoint operations
 - Captures message size histograms for collective operations

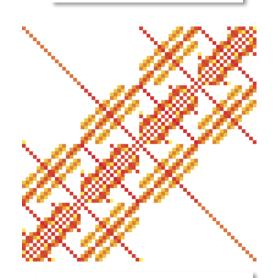


Data from AMG2000 benchmark running on Keeneland Initial Delivery System

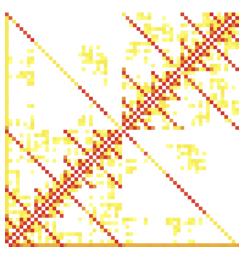

Pattern indicates a mostly nearest neighbor communication pattern with some extended communications



HPCG & HPL Communication Volume

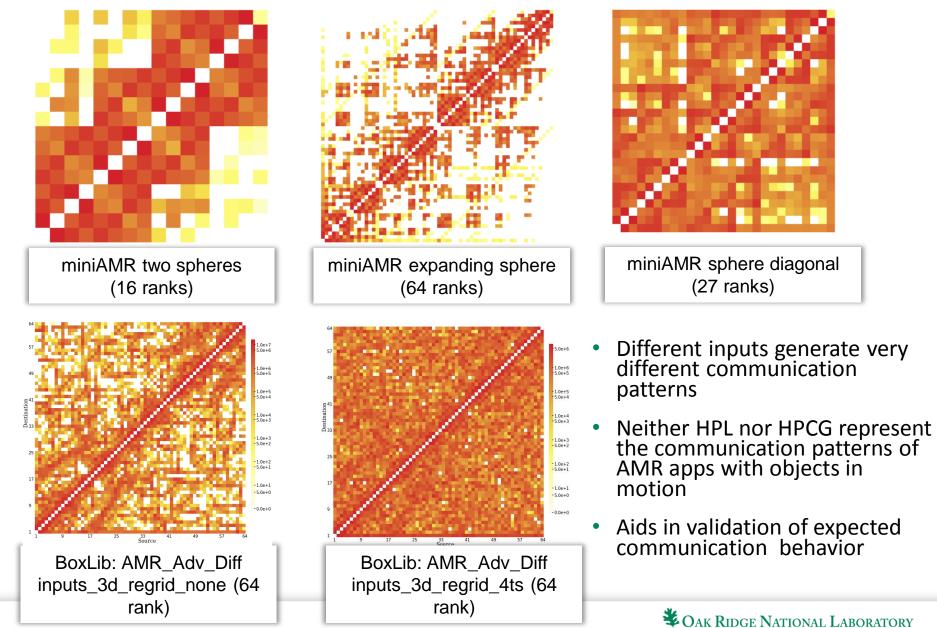


Nek: Communication patterns


Nek5000 eddy, 64 tasks

Nekbone multigrid preconditioner, 64 tasks Nekbone : communication behavior doesn't change much between scenarios

Nek5000: Some configurations resemble Nekbone very closely. Other configurations (vortex) show very different communication patterns.


As with other results, real applications can create more asymmetric patterns, whereas proxy apps tend to be very symmetrical.

Nek5000 vortex, 64 tasks

AMR proxy applications

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Memory Tools Overview

Memory Access Characterization

Memory Bandwidth

$$Bdwth = \frac{M_{req}S_{req}}{T}$$

- Mreq # memory requests, Sreq request size, T time
- Memory request count and execution time measured using hardware performance counters
- Using two start() and stop() caliper functions
 - Based on PAPI
 - Caliper calls inserted around code region of interest

Memory Access Characterization

- Reuse Distance: the number of distinctive data elements accessed between two consecutive references to the same element
 - time:123456789101112access:dacbccgefbdistance: \checkmark 5distinct accesses \checkmark

(a) An example access sequence.

- Fig courtesy of the paper "Predicting Whole-Program Locality through Reuse Distance Analysis"
- Benefits of using reuse distance
 - Quantify program locality
 - Allows direct comparison of data behavior across applications
- Challenges
 - High time cost (O (N2) for a memory trace of length N)
 - High storage cost (O (N) for a memory trace of length N)

Portal

Home

PADS: Performance Analytics Data Store Home Apps Instruction Mix Communication Clustering Memory Bandwidth Exp List

Welcome to Oxbow PADS Portal.

It facilitates exploration of performance data in our data store. Please visit the main Oxbow website for an overview of the project.

Applications 41

Number of applications: 41
* AMG2013 * AMGmk * BoxLibMinIAMR * CAM-SE * CIAN * CoEVP * CoMD * EAVL * Exp_CNS_NoSpec
* GFMCmk * GTC * HACCmk * HPCC * HPCG * HPL * KMI_Hash * LAMMPS * LSMS * LULESH
* minIAMR * minIFE * MOCFE * MPAS * MultiGrid_C * Nek5000 * NEKBONE * OpenMC * POP * OMCPACK * RSBench
* SSD * SPASM * UMT * Visit * vodeDriver * VPFFT * XSBench

Application Comparison

Go Start typing application names (autocomplete supported) and hit "Go" to compare.

Tools 6

Experiments 135

Total number of experiments: 135

Recent Experiments

Exp ID	Арр	AppVer	Tool	ToolVer	Exp	Exp Date	Upload User	Platform
5452638c53c4282d71c341c8	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-16agg-8stride-io_30d	2014-10-30 00:00:00	sarat	Keeneland
5452547853c428017b4f856b	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-32agg-4stride-io_30d	2014-10-30 00:00:00	sarat	Keeneland

Apps – Static analysis data

C PADS: Performance Analytics Data Store Home Apps Instruction Mix Communication Clustering Memory Bandwidth

Applications

The following table shows the list of applications including static analysis metrics (Cyclomatic Complexity, programming languages, types of parallelism, lines of code, etc.)

Click on a column name to sort. Hover over the Cyclomatic Complexity value for details. Caveat: This metric may be inaccurate if the program uses languages other than C/C++.

Арр 🔺	Version 🗢	We¢p	Domain 🗢	Origin 🔶	Prog. Lang \$	Parallelism \$	LOC \$	#File¢s	#Functions	Cyclomatic Complexity \$	Detai
AMG2013	2.3	Web	Parallel Algebraic Multigrid Solver	CORAL	С	MPI, OpenMP	74901	203	1229	10028	Details
AMGmk	1.0	Web	Algebraic multigrid solver (unstructured grids)	CORAL	С	OpenMP	1812	13	49	270	Detail
BoxLibMiniAMR	BoxLib v2	Web	miniApp - simple advection diffusion example	ExaCT Co-design center	Fortran 90, Perl, C	MPI, OpenMP	33767	99	40	<u>185</u>	Detai
CAM-SE	1.3.6	Web	Climate - Community Atmospheric Model	CORAL Throughput Benchmark	Fortran 90, C	MPI, OpenMP	161540	750	855	<u>5391</u>	Detai
CIAN	0.4	Web	Coupling and Data Analytics	CESAR	C++, C	MPI	14903	65	505	2803	Detai
CoEVP	2014-08-21	Web	ViscoPlasticity Scale-Bridging	ExMatEx	C++	MPI, OpenMP	35203	221	2904	5102	Detai
CoMD	1.1	Web	Molecular Dynamics	ExMatEx	С	MPI	4571	42	248	775	Detai
ddcMD	r1845-201	Web	Molecular Dynamics	ExMatEx	С	MPI, OpenMP	114925	593	2367	13857	Detai
EAVL	2014-06-17	Web	Big Data analysis and visualization		C++	MPI, CUDA	68289	231	1587	4294	Detai
Exp_CNS_NoSpec	BoxLib_co	Web	computational fluid dynamics	ExaCT	Fortran 90, C, Fortran 77, C++	MPI, OpenMP	3140	21	18	121	Deta
GFMCmk	Apr-30-20	Web	Micro-kernel	CORAL benchmark	Fortran 77, Fortran 90	OpenMP	188	13			Deta
GTC	2	Web	Fusion		Fortran 90	MPI	5208	28			Deta
HACCmk	1.0	Web	Cosmology	CORAL benchmark	С	MPI, OpenMP	150	13	4	<u>20</u>	Deta
HPCC	1.4.3	Web	Benchmark		С	MPI	26915	347	414	3934	Deta
HPCG	2.4	Web	Benchmark		C++	MPI, OpenMP	2424	72	76	386	Deta
HPCG	2.1	Web	Benchmark		C++	MPI, OpenMP	2364	71	75	362	Deta
HPL	2.1	Web	Benchmark		С	MPI	15741	287	194	2007	Deta
KMI_Hash	1.1	Web	Genome assembly and mapping analysis	CORAL	С	MPI	4232	16	117	574	Deta
LAMMPS	1 Feb 2014	Web	Molecular dynamics		C++	MPI	503894	3164			Deta
LSMS	3_rev237	Web	Ground state calculations of solid state systems and statistical physics calculations with a focus on magnetic systems	Coral benchmark suite	C, Fortran 77, C++	MPI, OpenMP, CUDA	102623	669	2504	9822	Deta
LULESH	2.0.3	Web	Shock Hydrodynamics	ExMatEx	C++	MPI, OpenMP	5432	8	297	1059	Deta
MCB	20130723	Web	Modeling the solution of a simple heuristic transport equation using a Monte Carlo	Computation Co-design at	C++	MPI, OpenMP	13458	139	2504	9822	Deta

Exp List

Instruction Mix

PADS: Performance Analytics Data Store Home Apps Instruction Mix Communication Clustering Memory Bandwidth Exp List

Instruction Mix Data

The following table shows the distribution of instructions (percentages) for an application across various categories. It is dynamically generated from live performance data in PADS.

This information is obtained using MIAMI, which is based on Intel's PIN, a dynamic binary instrumentation tool. We discard NOP and Prefetch instructions while calculating total instructions.

The table heatmap is generated by categorizing a cell's value into six categories(represented by different colors). So, every cell is colored based on the magnitude of the value it contains.

Higher magnitudes are denoted by darker colors.

Click anywhere on a row to select for comparison.

Click on a column name to sort.

Click on the application name to see a summary chart.

Арр	Exp	Platfo	orm 🗢 BrOps	FlOps₽	Fp SIMD\$	Int SIMD\$	IntOps≑	Mem SIMD\$	MemOps≑	Mis¢≉	Moves	Details	Compa
AMG2013	3d_laplace	KIDS	17.8	0.00	0.00	0.24	38.79	0.84	29.76	0.09	12.40	Details	
AMG2013	default	KIDS		0.02	0.01	0.07	34.38	0.25	33.54	0.03	9.99	Details	
AMGmk	default	KIDS	17.8	5.16	1.45	0.00	38.10	2.25	23.58	0.00	11.65	Details	
BoxLibMiniAMR	inputs_3d	Neer	11.5	5 10.73	2.53	0.00	38.26	0.07	28.30	0.07	8.48	Details	
BoxLibMiniAMR	inputs_2d	Neer	12.1	5 4.73	1.12	0.03	36.08	0.06	35.94	0.11	9.78	Details	
BoxLibMiniAMR	inputs_3d-64p	Neer	19.8	0.42	0.10	0.01	37.89	0.01	37.41	0.02	4.28	Details	
BoxLibMiniAMR	inputs_2d-64p	Neer	21.0	0.00	0.00	0.01	38.40	0.01	37.08	0.00	3.41	Details	
BoxLibMiniAMR	inputs_3d	Keen	eland 10.6	2.18	3.36	0.28	35.79	2.89	35.78	0.04	8.99	Details	
BoxLibMiniAMR	inputs_2d	Keen	eland 12.1	0.34	0.51	0.12	32.38	0.79	43.87	0.21	9.65	Details	
EAVL	iso40_noise0128	KIDS	8.7	0.18	0.00	0.00	38.99	0.32	24.62	0.00	27.12	Details	
Exp_CNS_NoSpec	input_3d_timestepsonly	KIDS	5.8	4.96	29.53	0.00	11.99	21.91	23.22	0.00	2.56	Details	
GFMCmk	single_thread	KIDS	9.7	0.13	21.54	0.28	28.23	20.09	18.77	0.00	1.22	Details	
HACCmk	1_thread	KIDS	6.3	0.01	7.18	0.97	20.83	1.48	43.05	0.00	20.12	Details	
HACCmk	8_threads-thread0	KIDS	6.7	2 0.01	1.03	0.14	23.04	0.21	48.88	0.00	19.96	Details	
HACCmk	8_threads-thread2	KIDS	17.8	4 0.00	14.30	1.94	24.76	2.94	25.65	0.00	12.57	Details	
HACCmk	2_threads-thread0	KIDS	6.7	2 0.01	3.85	0.52	22.12	0.79	46.06	0.00	19.92	Details	
HACCmk	2_threads-thread2	KIDS	17.0	0.00	16.28	2.18	23.67	3.35	24.39	0.00	13.06	Details	
HACCmk	4_threads-thread0	KIDS	6.7	0.01	2.01	0.28	22.73	0.41	47.88	0.00	19.93	Details	
HACCmk	4_threads-thread2	KIDS	18.5	0.00	12.63	1.70	25.68	2.60	26.73	0.00	12.15	Details	
HPCG	default	KIDS	13.1	5 15.21	0.02	0.00	27.00	0.01	27.14	0.02	17.43	Details	
HPL	default	KIDS	4.3	4 0.04	38.15	0.02	11.72	17.70	11.42	0.09	16.52	Details	
/			15.0				_				10.00	A	_

Communication

PADS: Performance Analytics Data Store

Communication Behavior

The following figures provide a preview of the communication patterns of various applications. They are dynamically generated from live performance data in PADS.

An application's message volume and counts are obtained using mpiP, a lightweight profiling library for MPI applications. It is used to collect basic communication characteristics (point-to-point and collective calls) as well as the communication topology.

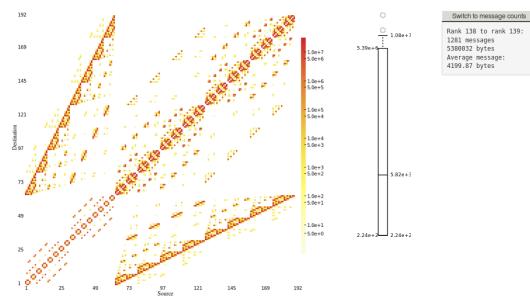
Communication Details

TPADS: Performance Analytics Data Store Home Apps Instruction Mix Communication Clustering Memory Bandwidth Exp List

Communication Volume

Application: MultiGrid_C

Experiment:inputs.3d_n_cells_512


The figure below shows the communication pattern (message volume in bytes) for the above application.

The axes denote the source and destination MPI ranks. Hover over the plot area to see specific statistics for a (source, destination) pair.

The boxplot (right) shows the distribution of message volume in bytes.

The box is enclosed by the ends of first and third quartiles of data. So, the box contains the middle 50% of the data. The horizontal line inside the box denotes the median. The whiskers (when visible) show the farthest points that are not outliers (within 3/2 times Q1-Q3 interquartile range). Any outliers are indicated by circles. See this for an introduction to boxplot.

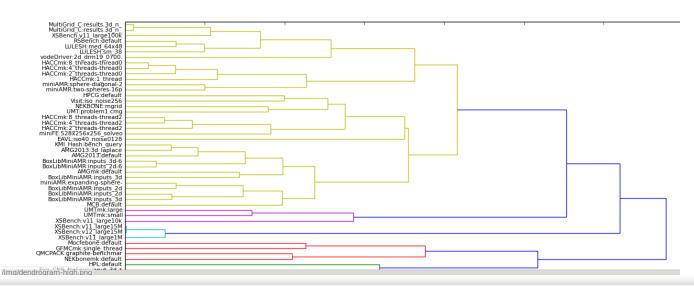
© Copyright 2013-2014 Oxbow Developers | Future Technologies Group | Oak Ridge National Laboratory

Clustering

TPADS: Performance Analytics Data Store Home Apps Instruction Mix Communication Clustering Memory Bandwidth Exp List

Clustering based on Instruction Mix Data

Clustering is performed on the instruction mix data across the following nine dimensions (various instruction categories).


BrOps FIOps Fp SIMD Int SIMD IntOps Mem SIMD MemOps Misc Moves

We use the hierarchical/agglomerative clustering approach. This is dynamically generated from live performance data in PADS.

The algorithm begins with a forest of clusters that will finally form a hierarchical tree. At the outset, each data point forms its own cluster. When two clusters a, b from this forest are combined into a single cluster c, a and b are removed from the forest, and c is added to the forest. When only one cluster remains in the forest, the algorithm stops, and this cluster becomes the root.

We use the euclidean distance as the distance metric between any two data points. At every iteration, each cluster is joined together with neighboring clusters (using average distance between cluster members) while combining clusters.

The figure below shows the heirarchical clusters using a dendrogram. Please see this for an introduction to dendrogram interpretation. The horizontal axis refers to a distance measure between clusters. Click on the image below to get a high resolution version.

Memory Bandwidth

TPADS: Performance Analytics Data Store Home Apps Instruction Mix Communication Clustering Memory Bandwidth Exp List

Memory Bandwidth Data

The following table shows the memory bandwidth information for the following applications. It is dynamically generated from live performance data in PADS.

This information is obtained using the memory bandwidth tool that is based on PAPI hardware counters. The statistics represent the mean value for each metric across the different tasks.

Click on a column name to sort.

Арр	Num Tasks	Exp \$	BW_Read_CPU(B/Cycle)	BW_Read_Wall(MB/#)	BW_Write_CPU(B/Cycle)	BW_Write_Wall(MB/\$)	CpuCycles 💠	MemReads 💠	MemWrites 💠	WallClock
BoxLibMiniAMR	8	inputs_3d_timestepsonly	0.56	928.58	0.00	0.00	3889044173.78	33839580.44	0.00	233213
BoxLibMiniAMR	8	inputs_2d_timestepsonly	0.17	169.52	0.00	0.00	437123724.56	1175823.78	0.00	44385
EAVL	1	iso40_noise0128	0.10	283.92	0.04	109.62	2415024670.00	3913667.00	1511002.00	88220
Exp_CNS_NoSpec	2	inputs_3d	0.78	1465.03	0.16	291.68	8700806824.67	106291529.00	21162151.33	464335
HACCmk	1	1_thread	0.02	68.69	0.00	4.15	68012485.50	37121.04	1300.48	2138
HACCmk	1	2_threads	0.01	28.53	0.00	6.21	42084770.15	7514.72	1067.29	1344
HACCmk	1	4_threads	0.01	38.29	0.00	11.70	25729291.90	5011.18	1090.02	833
HACCmk	1	8_threads	0.02	62.41	0.01	20.75	13438124.45	4706.45	1027.43	449
HPCG	192	default	1.24	3747.41	0.02	69.03	1810479834357.26	34990358553.28	644509616.94	59758108
HPCG	96	default	1.73	5237.05	0.03	79.98	1754664151237.09	47422673196.04	724269887.07	57953424
HPCG	16	default	1.69	5199.69	0.02	59.44	1788992249148.35	47356482590.47	541396967.12	58288400
HPCG	64	default	2.03	6213.75	0.03	86.14	1781695406851.03	56438609360.72	782441470.57	58130300
HPCG	32	default	2.47	7544.22	0.03	92.28	1782049497043.73	68811648462.12	841677890.91	58375100
miniAMR	64	expanding-sphere-64p	0.39	1153.40	0.20	591.85	57800231359.83	342289340.17	175763887.23	1978375
miniFE	12	528x256x256_solveonly	1.00	2750.49	0.05	139.99	517169685641.77	8076669915.31	411071139.38	18793246
MultiGrid_C	48	results.3d_n_cell_256	0.96	1524.62	0.18	289.55	3993980757.83	59642611.54	11314979.40	250234
MultiGrid_C	48	results.3d_n_cell_128	0.91	1163.94	0.19	233.31	480096312.52	6784229.81	1365572.20	37668
MultiGrid_C	48	results.3d_n_cell_512	0.96	2272.26	0.16	383.88	35150257764.76	521923405.73	87602453.30	1491313
Nek5000	32	default	1.02	3119.57	0.32	985.76	467544340678.97	7472873800.61	2361368907.52	15331066
Nek5000	64	default	1.05	3209.83	0.33	1003.20	235332132089.98	3866995867.82	1208590596.89	7710307
Nek5000	128	default	0.94	2861.03	0.29	884.81	81474889690.39	1218100135.30	378842600.18	2667178
Nek5000	256	default	0.89	2708.87	0.27	825.33	64764651440.12	897321356.04	273391993.60	2120022
Nek5000	512	default	0.70	2145.87	0.20	599.33	40376921711.09	443158499.75	123772050.60	1321717
RSBench	1	default	0.47	1303.64	0.00	3.67	71865764399.00	526762236.00	1482737.00	2586060
Visit	1	iso_noise256	0.15	411.83	0.12	307.97	6009073268.00	14512955.00	10852876.00	225539
vodeDriver	1	drm19_0700.fab	0.02	65.01	0.00	6.86	2337016343.00	829539.00	87515.00	81667

s.ornl.aov...

Experiments

7 PADS: Performance Analytics Data Store

Home

Instruction Mix Apps Communication

Memory Bandwidth Exp List Clustering

Experiments

					1			
Exp ID	App	AppVer	Tool	ToolVer	Exp	Exp Date	Upload User	Platform
5452638c53c4282d71c341c8	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-16agg-8stride-io_30d	2014-10-30 00:00:00	sarat	Keeneland
5452547853c428017b4f856b	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-32agg-4stride-io_30d	2014-10-30 00:00:00	sarat	Keeneland
5451668c53c42855bbe76a45	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-64agg-2stride-io	2014-10-27 00:00:00	sarat	Keeneland
545164b753c4283f9faf48f7	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-2agg-64stride-io	2014-10-27 00:00:00	sarat	Keeneland
5451643e53c42838e10259c7	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-4agg-32stride-io	2014-10-27 00:00:00	sarat	Keeneland
5451626b53c4282572d74a6b	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-4agg-16stride-io	2014-10-27 00:00:00	sarat	Keeneland
545160e353c428160b5d8071	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-4agg-16stride	2014-10-27 00:00:00	sarat	Keeneland
54515fac53c428093e641b73	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-8agg-16stride-io_30d	2014-10-27 00:00:00	sarat	Keeneland
54515d6453c4286bab05406e	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-2agg-16stride	2014-10-27 00:00:00	sarat	Keeneland
545159b353c4284587a5991d	MPAS	2.1	mpip	1.0	worldOcean_QU_120km-30d:contig-default_agg_0_stride	2014-10-27 00:00:00	sarat	Keeneland

Previous page Next page

Note: Click on experiment ID to view details (JSON).

Download

Experiment Details

Id: 542c4ce96c0d74bf8de61aa8 Application: Nek5000 Version: 1037

Tool: mpip Tool Version: 1.0

Experiment: vortex-64p Exp Date: 2014-10-01 00:00:00

Platform: Keeneland

Uploaded By: sarat Upload Date: 2014-10-01 14:50:17.364000

Runinfo: {"totalTasks": 64}

Download Raw Data

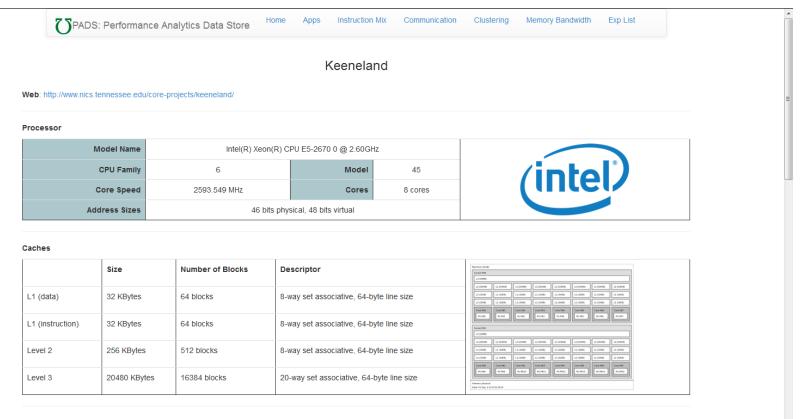
Summary

- Oxbow + PADS: Collaboration platform for domain scientists, applied mathematicians, computer scientists, and hardware architects interested in Co-Design.
- Infrastructure provides ability to track changes over different software versions and problem configurations and easily identify interesting correlations across applications
- Tools can show surprising similarities and differences between application behaviors
 - Instruction mix of UMTmk and HASH are very similar, despite one being a microkernel and the other being a datacentric application
 - HPL instruction mix does not reflect most applications, even microkernels behave differently. HPCG does better.
- Tools can show surprising behavior in a given application and help in validation
 - Communication patterns deviate from expected behavior
- Tools can predict what kinds of system attributes will be selected by testing a given system with a given application
 - HPL will perform best on systems with good support for SIMD instructions
 - HPCG will perform best on systems with support for localized communication and a mix of memory, move, floating point, and integer operations
- Multiple tools can show similarities and differences for different machine subsystems
 - Instruction mix may be very similar between applications, showing similar on-node characteristics
 - Communication patterns may be very different, showing different intra-node system requirements

Acknowledgements

- Contributors and Sponsors
 - Future Technologies Group: <u>http://ft.ornl.gov</u>
 - US National Science Foundation Keeneland Project: <u>http://keeneland.gatech.edu</u>
 - US Department of Energy Office of Science
 - DOE ExMatEx Codesign Center: <u>http://codesign.lanl.gov</u>
 - DOE Cesar Codesign Center: <u>http://cesar.mcs.anl.gov/</u>
 - DOE Exascale Efforts: <u>http://science.energy.gov/ascr/research/computer-science/</u>

Project website http://oxbow.ornl.gov


Sarat Sreepathi sarat@ornl.gov

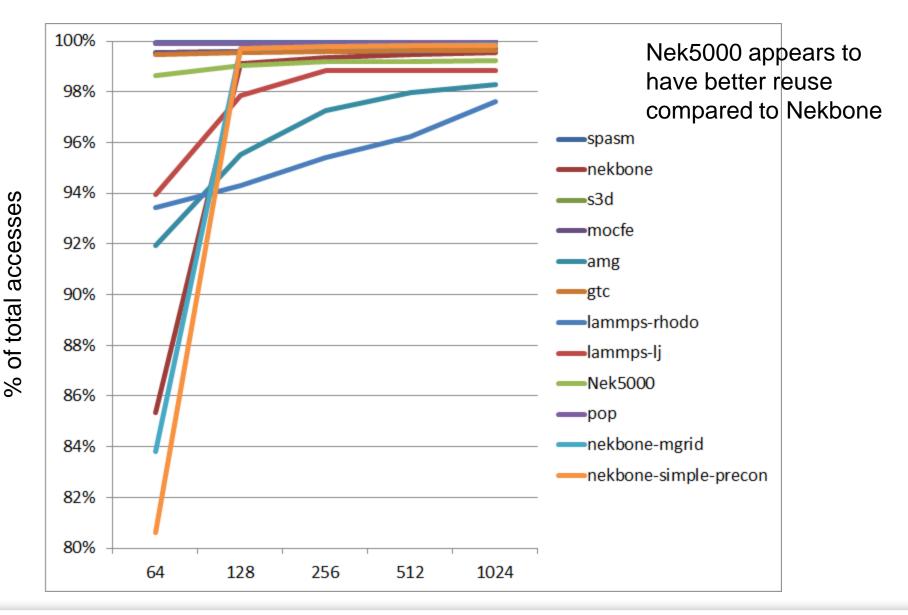
Jeffrey Vetter vetter@ornl.gov

Platform info

Bus Information (Ishw)

Tracking changes in behavior over different versions and durations

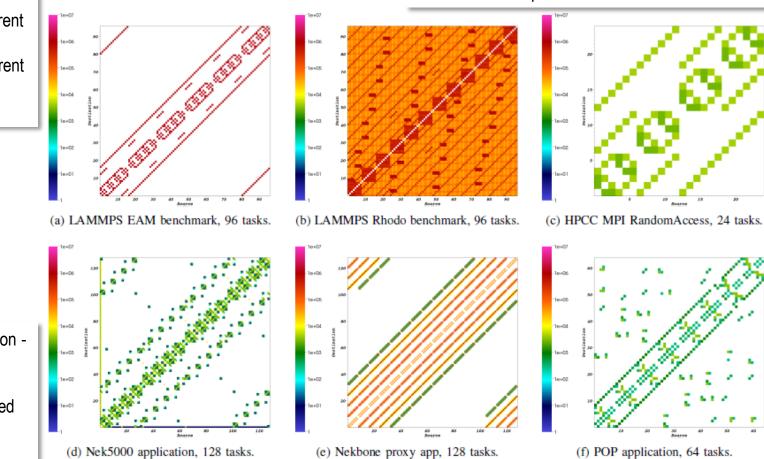
35.00 30.00 25.00 ercentage 20.00 15.00 10.00 5.00 0.00 MemOps Mem FlOps IntOps Fp SIMD Int SIMD Moves **BrOps** Misc SIMD


As applications evolve, the characteristics may change. Here, HPCG evolution from the initial alpha release to the current release shows optimizations to reduce branching instructions and integer operations

HPCG-1.1-1hr
HPCG-2.1-1hr
HPCG-1.1-1min
HPCG-2.1-1min

Benchmark behavior is expected to change when running for a sufficient amount of time. The instruction mix differences are not dramatic between 1 minute and 1 hour. A slight increase in the percentage of floating point operations reflects more time spent in the main CG solver loop.

Memory Reuse Results


Reuse distance

CAK RIDGE NATIONAL LABORATORY

Communication Volume

LAAMPS: The same application may exhibit very different communication patterns for different problem configurations

Nekbone (old version -2012) vs Nek5000: proxy application differs from modelled application in communication behavior.

Average volume of point to point communication. Color scale is consistent across all plots

RandomAccess: Pattern is not the expected monochromatic random scatter due to in-source

communication optimization

Observations

- Tools can show surprising similarities and differences between application behaviors
 - HPL instruction mix does not reflect most applications, even microkernels behave differently
 - HPCG instruction mix more closely resembles other applications than does HPL, even applications implementing very different algorithms
- Tools can show surprising behavior in a given application
 - Many application perform well below system peak memory capacity
- Tools can predict what kinds of system attributes will be selected by testing a given system with a
 given application
 - HPL will perform best on systems with good support for SIMD instructions
 - HPCG will perform best on systems with support for localized communication and a mix of memory, move, floating point, and integer operations
 - POP and Nek5000 will benefit from systems with support for more randomized, scattered communication
- Multiple tools can show similarities and differences for different machine subsystems
 - Instruction mix may be very similar between applications, showing similar on-node characteristics
 - Communication patterns may be very different, showing different intra-node system requirements
 - E.g. HPCG instruction mix matches other applications, but communication volume resembles other benchmarks more than it resembles full applications.
- Tools can track changes over different software versions and problem configurations
 - Version optimization of HPCG has reduced branching behavior, without other significant changes.
 - LAMMPS communication patterns are very different for different benchmark problems

