reno.ops.Observation#
- class reno.ops.Observation(ref, sigma=1.0, data=None)#
Bases:
DistributionRepresents a Normal distribution around an observed value.
Should only be used for supplying observational data with likelihoods to bayesian models constructed with model.pymc()
- Parameters:
ref (reno.components.Reference) – The equation to supply an observed value for.
sigma (float) – The std dev to use for the likelihood Normal distribution.
data (list) – The actual observed data to apply.
Methods
__init__(ref[, sigma, data])add_tensors(pymc_model)clip(min, max)equal(obj)eval([t, save, force])Get the vector of samples pulled from the probability distribution.
find_refs_of_type(search_type[, already_checked])Actually recursive as opposed to seek_refs, returns a list of all equation parts matching passed type.
get_shape()For now this is returning an integer because we only allow a single additional dimension.
get_type()Similar to shape, this gets computed recursively, used to automatically determine if the value needs to be initialized with a certain numpy type.
is_static()Convenience shortcut for
reno.utils.is_static()- True if this equation doesn't rely on any dynamic values (thus constant), False if it does.latex(**kwargs)Construct a string representation of this portion of the equation for use in a latex display.
not_equal(obj)populate(n[, steps, dim])Generate n x dim samples based on this probability distribution, assigns as a vector/matrix to
self.value.pt(**refs)Get a pytensor graph representing this piece of an equation.
pt_str(**refs)Construct a string containing relevant pytensor code for this piece of the equation.
seek_refs()Immediate refs only, depth=1.
series_max()series_min()sum([axis])Attributes
dtypeThe type of each underlying value.
shapeThe size of the data dimension, 1 by default.
timeseriesGet a timeseries view of the data (includes all historical data across all timesteps.)
- __annotations__ = {}#
- __module__ = 'reno.ops'#
- add_tensors(pymc_model)#
- pt(**refs)#
Get a pytensor graph representing this piece of an equation.
- Parameters:
refs (dict[str, TensorVariable])
- Return type:
TensorVariable
- pt_str(**refs)#
Construct a string containing relevant pytensor code for this piece of the equation. This is useful for “compiling” into pymc code.
- Parameters:
refs (dict[str, str])
- Return type:
str