reno.ops.Observation#

class reno.ops.Observation(ref, sigma=1.0, data=None)#

Bases: Distribution

Represents a Normal distribution around an observed value.

Should only be used for supplying observational data with likelihoods to bayesian models constructed with model.pymc()

Parameters:
  • ref (reno.components.Reference) – The equation to supply an observed value for.

  • sigma (float) – The std dev to use for the likelihood Normal distribution.

  • data (list) – The actual observed data to apply.

Methods

__init__(ref[, sigma, data])

add_tensors(pymc_model)

clip(min, max)

equal(obj)

eval([t, save, force])

Get the vector of samples pulled from the probability distribution.

find_refs_of_type(search_type[, already_checked])

Actually recursive as opposed to seek_refs, returns a list of all equation parts matching passed type.

get_shape()

For now this is returning an integer because we only allow a single additional dimension.

get_type()

Similar to shape, this gets computed recursively, used to automatically determine if the value needs to be initialized with a certain numpy type.

is_static()

Convenience shortcut for reno.utils.is_static() - True if this equation doesn't rely on any dynamic values (thus constant), False if it does.

latex(**kwargs)

Construct a string representation of this portion of the equation for use in a latex display.

not_equal(obj)

populate(n[, steps, dim])

Generate n x dim samples based on this probability distribution, assigns as a vector/matrix to self.value.

pt(**refs)

Get a pytensor graph representing this piece of an equation.

pt_str(**refs)

Construct a string containing relevant pytensor code for this piece of the equation.

seek_refs()

Immediate refs only, depth=1.

series_max()

series_min()

sum([axis])

Attributes

dtype

The type of each underlying value.

shape

The size of the data dimension, 1 by default.

timeseries

Get a timeseries view of the data (includes all historical data across all timesteps.)

__annotations__ = {}#
__module__ = 'reno.ops'#
add_tensors(pymc_model)#
pt(**refs)#

Get a pytensor graph representing this piece of an equation.

Parameters:

refs (dict[str, TensorVariable])

Return type:

TensorVariable

pt_str(**refs)#

Construct a string containing relevant pytensor code for this piece of the equation. This is useful for “compiling” into pymc code.

Parameters:

refs (dict[str, str])

Return type:

str