Dashboard

Class and code for rendering the ipywidgets dashboard.

class tx2.dashboard.Dashboard(transformer_wrapper: tx2.wrapper.Wrapper, show_umap=True, show_salience=True, show_word_count=True, show_cluster_salience=True, show_cluster_sample_btns=True, show_wordclouds=False, show_scoring=True, point_size=5, unfocused_point_size=20, highlighted_point_size=75)

Class that handles the setup, visualizations, and customization of the ipywidgets dashboard.

Methods:

__init__(transformer_wrapper[, show_umap, …])

Constructor.

render()

Return combined layout widget

Attributes:

colors

The hex RGB colors to use in the scatter plot and word frequency graphs to represent each possible category.

highlighted_point_size

Size to render highlighted and currently selected points in the UMAP plot.

point_size

Size to render points in the UMAP plot.

show_cluster_salience

Show the top aggregate-salience “important” words per cluster graphs.

show_cluster_sample_btns

Show the sampling buttons for each cluster.

show_salience

Show the current entry salience map “heatmap”.

show_scoring

Show aggregate scoring metrics, confusion matrices, etc.

show_umap

Show the UMAP projection/embedding scatter plot.

show_word_count

Show the per-cluster top word frequency graphs.

show_wordclouds

Show the wordclouds for each cluster.

transformer_wrapper

The tx2.wrapper.Wrapper instance/interface into the transformer.

unfocused_point_size

Size to render unfocused background points in the UMAP plot.

__init__(transformer_wrapper: tx2.wrapper.Wrapper, show_umap=True, show_salience=True, show_word_count=True, show_cluster_salience=True, show_cluster_sample_btns=True, show_wordclouds=False, show_scoring=True, point_size=5, unfocused_point_size=20, highlighted_point_size=75)

Constructor.

Parameters
  • transformer_wrapper – the tx2.wrapper.Wrapper instance/interface into the transformer.

  • show_umap – Show the UMAP projection/embedding scatter plot.

  • show_salience – Show the current entry salience map “heatmap”.

  • show_word_count – Show the per-cluster top word frequency graphs.

  • show_cluster_salience – Show the top aggregate-salience “important” words per cluster graphs.

  • show_cluster_sample_btns – Show the sampling buttons for each cluster.

  • show_wordclouds – Show the wordclouds for each cluster.

  • show_scoring – Show aggregate scoring metrics, confusion matrices, etc.

  • point_size – Size to render points in the UMAP plot.

  • unfocused_point_size – Size to render unfocused background points in the UMAP plot.

  • selected_point_size – Size to render highlighted and currently selected points in the UMAP plot.

colors

The hex RGB colors to use in the scatter plot and word frequency graphs to represent each possible category. By default this is set to the ‘Category20’ palette. The number of clusters cannot exceed the number of colors in this array. (Currently it’s automatically limited to the first 20 clusters.)

highlighted_point_size

Size to render highlighted and currently selected points in the UMAP plot.

point_size

Size to render points in the UMAP plot.

render()

Return combined layout widget

show_cluster_salience

Show the top aggregate-salience “important” words per cluster graphs.

show_cluster_sample_btns

Show the sampling buttons for each cluster.

show_salience

Show the current entry salience map “heatmap”.

show_scoring

Show aggregate scoring metrics, confusion matrices, etc.

show_umap

Show the UMAP projection/embedding scatter plot.

show_word_count

Show the per-cluster top word frequency graphs.

show_wordclouds

Show the wordclouds for each cluster.

transformer_wrapper

The tx2.wrapper.Wrapper instance/interface into the transformer.

unfocused_point_size

Size to render unfocused background points in the UMAP plot.