Visualization¶
Helper functions for constructing visualizations.
Functions:
|
Get a contrasting foreground text color for specified background hex color |
|
Creates and returns a wordcloud image that can be rendered with |
|
Get a nice looking colored background label. |
|
Render the word cloud that the currently selected point is in. |
|
Plot highest word values for each cluster. |
|
Plot highest word values for each cluster, colored according to entry classification |
|
Get the confusion matrix for given predictions. |
|
Get colored dataframes with macro and micro scores for the given predictions on an aggregate level and per class. |
|
Render the given word cloud. |
|
Render the grid of all wordclouds. |
|
Pre-render the wordcloud for each cluster, this makes switching the main wordcloud figure faster. |
|
Get a text-salience highlighted HTML paragraph. |
-
tx2.visualization.contrasting_text_color(hex_str: str) → str¶ Get a contrasting foreground text color for specified background hex color
- Parameters
hext_str – A hex string color (‘#XXXXXX’) for which to determine a black-or-white foreground color.
- Returns
‘#FFF’ or ‘#000’.
-
tx2.visualization.gen_wordcloud(texts: Union[numpy.ndarray, pandas.core.series.Series])¶ Creates and returns a wordcloud image that can be rendered with
plt.imshow.- Parameters
texts – Collection of strings to get text statistics from.
- Returns
The generated wordcloud image.
-
tx2.visualization.get_nice_html_label(text: str, color: str, foreground_color: Optional[str] = None) → str¶ Get a nice looking colored background label.
- Parameters
text – The text to display in the label.
color – The background color as a hex string (‘#XXXXXX’) for the label
foreground_color – Leave as None for an automatic black/white foreground color determination from
contrasting_text_color().
- Returns
An HTML string for the label.
-
tx2.visualization.plot_big_wordcloud(index: int, clusters: Dict[str, List[int]])¶ Render the word cloud that the currently selected point is in.
- Parameters
index – The index of the point to find the cluster of.
clusters – The dictionary of clusters where the values are the lists of indices of entries in that cluster.
-
tx2.visualization.plot_clusters(clusters, cluster_values)¶ Plot highest word values for each cluster.
-
tx2.visualization.plot_clusters_stacked(clusters, cluster_words_classified, encodings, colors)¶ Plot highest word values for each cluster, colored according to entry classification
-
tx2.visualization.plot_confusion_matrix(pred_y: List[int], target_y: List[int], encodings: Dict[str, int], figsize=(8, 8))¶ Get the confusion matrix for given predictions.
- Parameters
pred_y – Predicted labels.
target_y – Actual labels.
encodings – Dictionary of string label -> numeric label.
figsize – the size with which to
-
tx2.visualization.plot_metrics(pred_y: List[int], target_y: List[int], encodings: Dict[str, int])¶ Get colored dataframes with macro and micro scores for the given predictions on an aggregate level and per class.
- Parameters
pred_y – Predicted labels.
target_y – Actual labels.
encodings – Dictionary of string label -> numeric label.
- Returns
The per-class metrics dataframe and the aggregate metrics dataframe.
-
tx2.visualization.plot_passed_wordcloud(cloud, name)¶ Render the given word cloud.
- Parameters
cloud – The word cloud to render.
name – The title to render with the word cloud.
-
tx2.visualization.plot_wordclouds(dashboard)¶ Render the grid of all wordclouds.
- Parameters
dashboard – The current dashboard, needed in order to grab the cluster data.
-
tx2.visualization.prepare_wordclouds(clusters: Dict[str, List[int]], test_texts: Union[numpy.ndarray, pandas.core.series.Series])¶ Pre-render the wordcloud for each cluster, this makes switching the main wordcloud figure faster.
- Parameters
clusters – Dictionary of clusters where the values are the lists of dataframe indices for the entries in each cluster.
test_texts – The full test corpus.
-
tx2.visualization.render_html_text(text, transformer_wrapper: tx2.wrapper.Wrapper) → str¶ Get a text-salience highlighted HTML paragraph.
- Parameters
text – The text to run salience on and render.
transformer_wrapper – The
tx2.wrapper.Wrapperinstance.
- Returns
An HTML string with span-styled-highlights on each relevant word.